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AFIT/DS/ENY/05-5

Abstract

The optimal employment of autonomous search and destroy vehicles is ad-

dressed. The results apply to air, land, or water vehicles with 1, k, or infinite

warheads. The specific scenarios considered involve an air vehicle searching a battle

space for stationary targets in the presence of false targets. Encounters are modelled

with uniform, Poisson, and normal distributions. Linear and circular search patterns

are examined. All relevant parameters are extracted from intelligence information,

the sensor performance specification, and the air vehicle performance specification.

Analytic system effectiveness measures are derived using applied probability theory.

The effectiveness measures derived in this dissertation handle time-varying parame-

ters which characterize the battle space environment and the performance of the

system. This allows the formulation and solution of optimization problems that

maximize the probability of target attacks while at the same time constraining the

probability of false target attacks. Optimal schedules for controlling sensor threshold

and area coverage rate during a mission are derived and compared to the constant-

parameter results. These schedules establish a system operating characteristic. An

increase in system effectiveness is demonstrated when parameters are dynamically

controlled during a mission. Plots depicting sensitivity to the constraint on false

target attacks and sensitivity to the number of warheads are generated to give deci-

sion makers the complete trade space for either designing new systems or operating

existing systems.
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Establishment of a System Operating Characteristic

for

Autonomous Wide Area Search Vehicles

I. Introduction

1.1 Motivation

Carl Von Clausewitz stated, “War is an extension of politics by other means” [10].

At the heart of wartime politics is blue-force casualties and collateral damage to

non-combatant entities. Recent advances in autonomous target recognition and au-

tonomous navigation have given political leaders the potential to prosecute targets

in dangerous environments without having to worry about blue-force casualties. Col-

lateral damage, however, still remains a concern. One can imagine the news headline

when an autonomous search and destroy vehicle takes out a school bus filled with

innocent children. Manned systems have relied on humans as additional checks to

minimize collateral damage. In the case of autonomous systems, the human checks

are, by definition, removed. Prior to employing any such system, one must determine

how well the system can perform. System effectiveness is conditioned on the system

operating characteristic, upon which the operating point is defined by area coverage

rate and the sensor threshold used for target declaration. System effectiveness also

depends on the battle space environment in terms of numbers and types of targets

and false targets.

Determining or predicting system effectiveness can be done using mathematical

analysis, computer simulation, experimentation, or operational flight test. This re-

search establishes a system operating characteristic for autonomous wide

area search vehicles that can be used to analytically calculate system ef-
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fectiveness. The presence of false targets as well as a sensor’s likelihood of misclas-

sifying false targets is acknowledged up front. False targets can be non-combatant

entities, decoys, or objects of little strategic value. Inputs to the mathematical “black

box” in Figure 1.1 come from the order of battle intelligence, the sensor performance

specification, and the air vehicle performance specification. The order of battle intel-

ligence provides battle space dimensions, target distributions, and false target distri-

butions. Sensor performance comes from Receiver Operating Characteristic (ROC)

curves (determined experimentally), which relate true positive fraction to false posi-

tive fraction. Air vehicle performance involves airspeed limits and endurance values.

Outputs from the black box are system effectiveness, a sensor threshold schedule,

and an area coverage rate schedule. Any objects reported as targets (correctly or

incorrectly) are attacked. The number of false target attacks during a mission is

denoted m, and the number of target attacks is denoted n. System effectiveness

can be quantified using the probability of at least m̂ false target attacks, denoted

P (m ≥ m̂), and the probability of at least n̂ target attacks, denoted P (n ≥ n̂). The

values for m̂ and n̂ are specified by the designer or mission planner. The contents of

the black box will be revealed in Chapter II.

Figure 1.1 Input-Output Diagram.

Clearly one wants the expected number of target attacks to be high and the

expected number of false target attacks to be low. Unfortunately, due to the ROC,

adjusting the sensor threshold to increase the number of target attacks also increases
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the number of false target attacks. For fixed mission durations, lower area coverage

rates increase sensor performance, but decrease total area searched. These tradeoffs

must be worked to find solutions. Once the internal definition of the black box

in Figure 1.1 is known, optimization problems can be formulated and solved. The

general optimal control problem will be of the form

Max: P (n ≥ n̂)

subj to: P (m ≥ m̂) ≤ b

where the upper bound b is set by the designer or mission planner. The control

variables are area coverage rate and sensor threshold, which are further defined in

the next section.

1.2 Search and Destroy Mission

The search and destroy mission involves searching, detecting, classifying, and

attacking [1]. This can be done a number of ways. For example, a sensor craft can

locate and classify objects, then pass the information to a separate bomber aircraft

that performs the attacks. An Unmanned Combat Aerial Vehicle (UCAV) can locate,

classify, and destroy objects on its own. An expendable autonomous wide area search

munition locates, classifies, and destroys an object as well as itself in the process.

All of the above concepts involve sensors with automatic target recognition (ATR)

algorithms, and warheads. The mathematical foundation developed in this research

handles systems with 1, k, or infinite warheads. Ironically, the infinite-warhead

case can be used to mathematically evaluate the zero-warhead sensor craft case.

The relation comes from the fact that a sensor craft broadcasts target coordinates

assuming a shooter exists to destroy the targets. A sensor craft’s mission does not

terminate because it has no more warheads. It continues to search and classify until

it is sent home or shot down. Thus a sensor craft is mathematically equivalent to a

vehicle having an infinite number of warheads.

1-3



1.2.1 Searching. Searching requires a pattern and area coverage rate. Two

search patterns are addressed in this research. The first pattern is the linear pattern

depicted in Figure 1.2(a). Although Figure 1.2(a) shows a constant swath width,

the linear pattern can can be used for any linear-symmetric battle space. Further,

any randomly-shaped battle space can be broken up into piecewise linear-symmetric

segments. The second pattern involves using concentric annuli emanating from the

origin. Figure 1.2(b) shows one such annulus at radius r. Searching a disc of radius

R using concentric annuli emanating from the origin approximates an outward spiral

search pattern and is mathematically tractable.

(a) Linear (b) Circular

Figure 1.2 Search Patterns

Area coverage rate can be varied a number of ways. For constant-altitude flight,

area coverage rate is the product of velocity and swath width. Thus, changing either

parameter changes the area coverage rate. Swath width is constrained by gimbal

limits. For fixed degrees of azimuth and fixed velocity, changing altitude changes

the area coverage rate. In this research, the flight condition in terms of altitude,

velocity, and swath width will all be rolled up into area coverage rate, which will be

one of the two control variables. Specific application of whether one varies altitude,

velocity, or swath width is up to the designer or mission planner. An example of

varying velocity to hold area coverage rate constant is given in Section 1.3.
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1.2.2 Detecting. Detections will occur based on assumed target and false

probability distributions. The seven battle space scenarios conceived by Jacques and

Pachter [26] are examined in this research. Scenarios 1-4 use linear-symmetric battle

spaces, and Scenarios 5-7 use circular battle spaces. The differences in the scenarios

come from the target and false target probability distributions as well as the number

of targets. For all scenarios, both targets and false targets are assumed fixed at

unknown locations.

Scenario 1 consists of a single target uniformly distributed in a linear-symmetric

battle space among a Poisson field of false targets.

Scenario 2 consists of a linear-symmetric battle space with a Poisson field of

targets and a Poisson field of false targets.

Scenario 3 consists of N targets uniformly distributed in a linear-symmetric

battle space among a Poisson field of false targets. Note: Scenario 1 is a special case

of Scenario 3 with N = 1.

Scenario 4 consists of N targets and M false targets uniformly distributed in

a linear-symmetric battle space.

Scenario 5 consists of N targets normally distributed in a circular battle space

among a Poisson field of false targets. Normally distributed refers to a circular-

normal distribution centered at the origin with a target standard deviation σy.

Scenario 6 consists of N targets and M false targets normally distributed in

a circular battle space. Normally distributed refers to circular-normal distributions

centered at the origin with a target standard deviation σy and a false target standard

deviation σx.

Scenario 7 consists of a single target normally distributed in a circular battle

space among a Poisson field of false targets. Note: Scenario 7 is a special case of

Scenario 5 with N = 1.
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Other combinations of target and false target distributions exist. Table 1.1

shows where the seven scenarios fall in a combination matrix for uniform, Poisson,

and normal distributions. The techniques and results in this dissertation could easily

be applied to the remaining combinations.

Table 1.1 Scenario Matrix
uniform Poisson normal
targets targets targets

uniform false targets Scenario 4 — —
Poisson false targets Scenarios 1,3 Scenario 2 Scenarios 5,7
normal false targets — — Scenario 6

1.2.3 Classifying. In practice, detected objects are classified to a certain

level of discrimination. For example, one may classify on object as either air breath-

ing or ballistic. A finer level of discrimination may be a specific type of air-breathing

or ballistic object. Regardless of the level of discrimination, there is a point where

the sensor reports a detected object as either a target thereby authorizing an attack,

or a false target thereby commanding no attack. Sensor performance is judged by

how often the sensor is correct. The probability of a target report is the probabil-

ity the system correctly reports a target when a target is encountered. Selecting a

sensor threshold is tantamount to selecting the probability of a target report. The

sensor can also be wrong. By using a ROC curve to model sensor performance, the

probability of attacking a false target can be written in terms of the probability of

a target report. Therefore, the second control variable will be the probability of a

target report.

1.2.4 Attacking. Any objects reported as targets (correctly or incorrectly)

are authorized to be attacked. An autonomous munition would fly itself into the

reported target, an autonomous UCAV would launch one of its warheads, or an

autonomous sensor craft would broadcast target coordinates to shooters.
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1.3 Hypothetical Operational Example

To help illustrate the relevance of this research, a hypothetical operational

example is given. An intelligence source states that a strategic target is known

to be in the area designated AB in Figure 1.3, which is one of the most heavily

defended areas in the region. It can be assumed the target is equally likely to

appear anywhere in AB. It is also known that some subareas of AB have more false

targets than others. The Battle Commander tasks his analysts to provide options

involving an autonomous search and destroy vehicle. He would like the probability of

attacking the target to be greater than 0.50. However, he would like the probability

of attacking any false targets to be less than 0.30.

Figure 1.3 Hypothetical Operational Example. Map downloaded from [52].

Based on the order of battle intelligence given, the analysts use a uniform

distribution to model the target encounter. Since false targets are often encountered

at certain rates, they use a Poisson distribution based on the expected false target

densities (denoted by α) shown in Figure 1.4 to model false target encounters.
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Figure 1.4 False Target Density Map.

Although AB is not exactly a linear-symmetric battle space, the analysts as-

sume the heading changes and additional area searched are small enough to make

a linear-symmetric assumption valid. Hence, the operational example resembles

Scenario 1. The sensor performance specification gives the ROC curve shown in

Figure 1.5 for a constant area coverage rate of 5 km2

min
. The ROC curve was generated

from experimental data using various signal-to-noise ratios. True positive fraction

(TPF) is the probability of the sensor reporting a target when a target is encoun-

tered. False positive fraction (FPF) is the probability of the sensor reporting a target

when a false target is encountered. The analysts use the curve fit in Figure 1.5 to

mathematically relate TPF and FPF.
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Figure 1.5 Receiver Operating Characteristic Curve.
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It should be noted that TPF has the same definition as the probability of a

target report. Thus scheduling TPF is the same as scheduling the probability of a

target report. The sensor and ATR algorithm were designed for the constant area

coverage rate of 5 km2

min
; therefore, the analysts decide to fix area coverage rate and

use the single ROC curve provided. Adjusting sensor threshold over time moves

the operating point along the ROC curve. This amounts to a schedule for TPF

and a corresponding schedule for FPF. Assuming a constant area coverage rate of 5

km2

min
, the analysts must schedule airspeed and find the best schedule for either TPF.

The assumed path is left to right; whereby, the vehicle starts in the area where

α = 4 encounters
km2 . Using differential equations, the analysts schedule airspeed to keep

area coverage rate constant at 5 km2

min
. No optimization is required. The resulting

schedule is shown in Figure 1.6. As one would expect, higher velocities are needed

at the narrow portions of AB, and lower velocities are needed at the wider portions.

A velocity schedule like that shown in Figure 1.6 is plausible for an unmanned air

vehicle.
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Figure 1.6 Velocity Schedule.
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Using the results from this research, they calculate a number of schedules for

TPF based on various b values. Three examples for an autonomous search and

destroy vehicle with one warhead are shown in Figure 1.7. In areas where false

target density is high, TPF is low and relatively flat. In areas where false target

density is low, TPF is high and gradually increases as the time remaining decreases.

The increase is more when the constraint on false target attacks is loose and less

when it is tight.
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Figure 1.7 Probability of a Target Report (or True Positive Fraction) when One
Warhead is Available.
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The analysts repeat the calculations for 2, 3, and 5 warheads. The results for 5

warheads are approximately equal to the results for an infinite number of warheads;

therefore, they conclude considering more than 5 warheads makes little sense. They

generate a summary plot in Figure 1.8 of probability of attacking the target versus

probability of attacking any false targets. In other words, they generate the system

operating characteristic broken down by number of warheads and upper bound on

false target attacks. Each point on the graph represents an optimal schedule for

sensor threshold. Had area coverage rate been allowed to vary, each point would

have represented the combined optimal schedules for area coverage rate and sensor

threshold. Figure 1.8 shows the initial desire of getting the probability of attacking

the target to be greater than 0.50 while keeping the probability of attacking any

false targets less than 0.30 is not achievable. However, the Commander now has a

complete depiction of the trade space. He or she can look at one figure and see the

effects of changing constraint level or changing number of warheads.
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1.4 Previous Work

The overarching problem of multi-vehicle cooperative control, which the present

problem falls under, has a tremendous amount of literature. Programs such as

DARPA’s Taskable Agent Software Kit (TASK) are attempting to establish common

infrastructure, mathematical foundations, and metrics for building, controlling, and

understanding agent-based systems. Models range from biological [11] to physics-

based control models [19]. Concepts like reactive behavior [18], game theory [29],

and decision theory [21], [35] are being examined. In addition to military operations,

applications include robot navigation [46], highway transportation [6], and drug in-

terdiction [9]. Each research area has its own wealth of literature. The present

research area involves analytic expressions for effectiveness of autonomous search

and destroy vehicles. The literature related to this area falls into the following five

categories:

• Single Target, No False Targets

• Single Target, False Targets

• Multiple Targets, No False Targets

• Multiple Targets, False Targets

• Moving Targets

In this dissertation, stationary targets and stationary false targets are examined.

Since ATR performance is the focus, false targets are required. Thus, the category

of multiple targets, multiple false targets is most relevant. For continuity, samples

of literature found in each category as well as classic works and surveys are listed.

1.4.1 Classic Works. While many have contributed to search theory, Koop-

man, Stone, and Washburn seem to be the most influential. Koopman laid the

foundation in the 1940s, when searching for U-boats in World War II motivated re-

searchers to analyze the fundamental search problem. His work is summarized in [30]
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and contains the much referenced exponential detection law. Stone wrote the first

unified and comprehensive presentation of search theory results in 1975 [40]. More

recently, he wrote a text book on Bayesian Multiple Target Tracking [42]. Washburn,

currently a Professor of Operations Research at the Naval Postgraduate School, has

written text books on both search theory [49] and game theory [51].

Two comprehensive review articles on search theory exist. Stone provides the

historical perspective with his “What’s Happened in Search Theory Since the 1975

Lanchester Prize?” article [41]. Benkoski, et al. provide the topic-by-topic perspec-

tive with their “A Survey of the Search Theory Literature” article [4]. Together, the

articles give progress in search theory up through the 1980s, where the stationary

target problem was thought to have “reached a mature state” [45].

The classic works of Koopman, Stone, and Washburn, as well as the litera-

ture listed in the surveys, provide an analytic foundation for basic search problems.

However, the research does not address multiple-target, multiple-false-target prob-

lems nor the disposable-munition and multi-warhead-UCAV problems. In addition,

the research does not allow sensor thresholds or operating conditions to vary with

time.

1.4.2 Single Target, No False Targets. The single-target, no false-target

problem is the simplest of the search and destroy problems. This does not mean the

problem is trivial. Concepts such as target distribution, search effort, and timing

need to be addressed.

Haoi and Leondes [22] tried to eliminate the need for knowing a target’s a

priori probability density function. Their goal was to maximize the probability of

detecting the target using a single-try (non-redundant) search which was a function

of search effort and target location. They used Dobbie’s [16] extension of Koopman’s

exponential detection law, whereby search effort was a function of the searcher’s loca-

tion. They developed a search plan that traded off performance in terms of detection
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probability for insensitivity to the target a priori probability density function. Their

minimax solution guaranteed a non-zero detection probability, but not much more

than that. This work is another example of how adding robustness decreases per-

formance. In the present research, search plans are limited to linear and circular

plans, and a priori probability density functions are assumed correct. That does not

prohibit sensitivity studies to parameter changes in the probability distributions.

Iida, et al. [23] were able to relax the assumption of local effectiveness of

searching effort, whereby only objects at a point (not objects in a neighborhood) are

able to be detected. They assumed search effort was dependent on location and not

time. Thus image and data processing time was assumed to be zero.

1.4.3 Single Target, False Targets. When two types of objects exist, de-

tection alone no longer suffices. One must be able to classify an object as either

a target or false target. Along with classification comes the chance to misclassify.

Attacking a false target or not attacking a target can have grave consequences. For

this dissertation, attacking false targets is the focus. Specifically, a maximum is

set on the probability of at least m̂ false target attacks. Detections are modelled

based on target and false probability distributions. The detection process involves

scanning an area for objects. Once an object is detected, a classification is made.

Correct classification and misclassification are modelled with a Receiver Operating

Characteristic curve.

The approach of scanning areas for objects, then classifying all detected objects

was done by Stone and Stanshine [43], [44] in the early 1970s. They used a broad

search density function to calculate search effort. They used Poisson distributions

to model false target encounters. They also brought in the idea of optimization.

Specifically they examined the problem of minimizing the mean time to find the

target. However, the probability of classifying a false target as a target was assumed

to be zero. Either an object was correctly classified after a certain amount of effort
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or the searcher moved on. In addition, their search plan did not depend on the

number of false targets found.

Dobbie [17] looked at allowing search plans to depend on the number of false

targets found. He allowed for duplicative search, where the same spot could be

searched more than once. His results, however, applied to a particular case where

the number of false targets was bounded.

1.4.4 Multiple Targets, No False Targets. Multiple targets can be inter-

preted two ways. One can have multiple targets of the same type, or one can have

multiple types of targets. In this dissertation, the focus is on multiple homogeneous

targets. Cozzolino [12] examined multiple targets of different sizes. He used Poisson

distributions for target encounters. Since he used a sensor craft, with no limits on

the number of target declarations, he was not concerned with limiting the number of

misclassifications. He simply classified an encounter, either correctly or incorrectly,

then moved on with the search. A more realistic problem involves limiting the num-

ber of declarations (and warheads for subsequent attacks), thus conditioning success

on the number of previous attacks. Special attention must be given to false target

attack rate which, if too high, makes autonomous operation less attractive.

1.4.5 Multiple Targets, False Targets. Koopman, Stone, Washburn, and

others cited thus far made great strides in developing analytic expressions, but they

did not specifically address scenarios involving multiple targets, multiple false tar-

gets, and air vehicles with multiple warheads. Richardson [37] summarized assump-

tions made about measures of effectiveness, target motion, and ways in which search

effort is characterized. According to Richardson, two of the most common measures

of effectiveness are probability of detection and expected time to detection. While

these are appropriate for certain problems, they do not address the real operational

environment where false targets and decoys exist. In his remarks for future research,
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Richardson addressed the need to examine scenarios with multiple targets and false

targets.

Jacques, Pachter, Decker, Jeffcoat, and Slater have all recently published lit-

erature on analytic expressions for effectiveness of autonomous search and destroy

vehicles. Jacques and Pachter [26] developed analytic expressions for autonomous

wide area search and destroy munitions for the seven scenarios listed in Table 1.1.

They offered a general approach for defining task benefits for cooperative behavior.

However, their expressions assume the ATR probabilities, area coverage rate, target

parameters, and false target parameters are all constant.

In 2004, Decker [15] extended the work of Jacques and Pachter to include

multi-warhead autonomous search and destroy vehicles. He proved the munition,

UCAV, and sensor craft problems could all be evaluated using a common mathe-

matical framework. However, his expressions also assume the ATR probabilities,

area coverage rate, target parameters, and false target parameters are all constant.

The recent expressions derived by Jacques, Pachter, and Decker [26], [15] were

the starting point for this research. Many of the expressions were in closed form and

ideal for parameter optimization problems. However, the battle space environment

need not be constant. Moreover, the system operating point in terms of sensor

threshold and area coverage rate need not be constant. A natural extension of

their work involves deriving generalized expressions that can handle time-varying

parameters.

Jeffcoat [27] examined the effect of cueing on the probability of target detection.

He derived analytic expressions using Markov chains and established an upper bound

on the benefits of cueing for two search munitions against stationary targets. His

results, arrived at through a different approach, are similar to those of Jacques [25].

His method of using Markov chains was incorporated into Decker’s work [15].
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Slater [38] looked at task allocation where search munitions can either perform

battle damage assessment or continue searching for new targets. If a search munition

determines a target is still alive, it mounts a second attack. Otherwise it continues to

search. His results show advantages to cooperative behavior are heavily dependent

on the probabilities assumed for the initial discovery process, the effectiveness of the

attack, and the value associated with striking real targets versus false targets. These

results are in line with those produced by Jacques [25]. Slater derived analytic

expressions for two search munitions. However, his expressions also assume the

problem parameters are all constant throughout the mission.

1.4.6 Moving Targets. Although moving targets are not considered in this

research, they exist in the battle space and will eventually need to be addressed.

Moving-target problems are formidable. Assuming the initial target distribution is

good for all time no longer works. Data association and tracking must be addressed.

Time of information needs to be recorded. Models for target motion need to be

derived. The most common way to handle moving targets is to assume the motion

is Markov [3], [5], [50]. This makes the mathematics more tractable and allows use

of common techniques such as Kalman filters [28], [34]. Recently, Dambreville [14]

departed from the standard Markov assumption and considered the set of available

target trajectories. He reasoned set trajectories were more realistic than simple

probabilistic models. The problem resulted in games between the target and the

searcher. The games were solved using approximation methods. Some proofs were

provided for special cases such as convex evaluation functions. How Dambreville’s

results scale to more complex problems is unclear.

Mahler [20], [31], [33] presents a promising comprehensive approach to sensor

management. He uses finite set statistics derived from point process theory [13], [47]

and reformulates the multi-sensor, multi-target problem into a single-sensor, single-

target problem. Specifically, all of the sensors are bundled into one giant meta-sensor,

and all of the targets are bundled into one giant meta-target. All individual char-
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acteristics are retained in the process. The mechanics to get solutions involves “set

derivatives” and “set integrals”. Practical solutions, however, involve approximation

techniques. One example is the probability hypothesis density filter [32], [48] which is

a 1st order approximation of the Bayes multi-target filter. While Mahler’s approach

seems to account for everything (moving targets, false targets, heterogeneous agents

and targets popping in and out, etc.), Stone remarks “it is unnecessary and may

even be counterproductive to use random sets to model the probability distribution

of all the ways that contacts could have been produced but were not” [42].

1.4.7 System Operating Characteristic. The idea of establishing a system

operating characteristic as opposed to a receiver operating characteristic is not new.

In fact, a “receiver” in most applications is really a system of subcomponents. Pa-

pers by authors such as Bar-Shalom exist that describe a transition from receiver

operating characteristic to system operating characteristic [2]. Regardless of the ap-

plication, the “system” must be clearly defined. For the present research, the system

is defined as the area coverage rate and automatic target recognition threshold. The

combination of the sensor and the vehicle, whose motion together with the instanta-

neous sensor footprint, determines the area coverage rate. No literature was found

using these definitions. Clearly one could define a different system and establish a

different system operating characteristic.

1.5 Research Statement

The key element covered in this research not covered in the literature is time-

varying parameters which leads to function optimization as opposed to parameter

optimization. The result is a generalized mathematical framework that handles spa-

tially different battle space environments and allows system operating points to vary

with time. The mathematical framework applies to the munition, UCAV, and sensor

craft problems. A schedule for sensor threshold and area coverage rate to maximum

P (n ≥ n̂) for a given maximum allowable P (m ≥ m̂) is possible. These are tactical
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solutions needed by the hands-on mission planner to maximize operational effective-

ness. The generalized mathematical framework can handle the following three types

of optimization problems:

• Fixed Area Coverage Rate, Fixed Threshold

• Fixed Area Coverage Rate, Variable Threshold

• Variable Area Coverage Rate, Variable Threshold

Up to now, only the first type was possible.

Expressions needed to calculate P (n ≥ n̂) and P (m ≥ m̂) for the seven sce-

narios listed in Table 1.1 are derived. To gain insight into the problem, analytic

conclusions using the munition and sensor craft results for Scenarios 1, 2, and 7

are provided. Using these tractable instances, the problem can be bounded and nu-

merical results can be verified. Numerical results from dynamic problems are also

checked against analytic results from fixed problems.

1.6 Applicability

The results of this dissertation can be used in the design phase or operational

phase of a system. The system can be manned, unmanned, airborne-based, land-

based, or water-based. The sensor can be RADAR, SONAR, IR, LASER, or any

other type of sensor whose performance can be modelled with a ROC curve. In

the design phase, the results can be used to develop system requirements, compare

competing designs, or verify simulation results. Parameter sensitivity studies can be

done to determine the cost effectiveness of improving sensors, warheads, or vehicle

performance. The mathematical framework enables sound systems engineering. In

the operational phase, tactical decisions in the form of setting operating points and

determining the number of warheads are possible using the results of this dissertation.

The hypothetical operational example in Section 1.3 showed how summary plots of

P (n ≥ n̂) versus upper bound on P (m ≥ m̂) give Commanders a complete picture
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of the trade space. He or she can look at one figure and see the effects of changing

constraint level or changing number of warheads.

1.7 Outline of Document

In Chapter II, the black box in Figure 1.1 is defined. The sequential events

method used to calculate system effectiveness is explained. Everything needed to

calculate P (n ≥ n̂) and P (m ≥ m̂) for the seven scenarios listed in Table 1.1 is

provided. How a ROC curve relates ATR parameters and how to setup an optimal

control problem are shown. Chapter II, together with AppendixA and Appendix B,

contain the new analytic contributions to the field where the fundamental problem

is generalized to handle time-varying parameters.

In Chapter III, analytic conclusions using the munition and sensor craft results

for Scenarios 1, 2, and 7 are provided. The analytic conclusions are derived using well

known methods from optimal control theory. The analytic conclusions are then used

to verify the numerical results in Chapter IV, where various types of optimization

problems listed in Section 1.5 are examined. Conclusions and recommendations for

future research are given in Chapter V.
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II. Problem Setup and Definitions

In this chapter, the black box in Figure 1.1 is defined. The sequential events method

used to calculate system effectiveness is explained. Everything needed to calculate

P (n ≥ n̂) and P (m ≥ m̂) for the seven scenarios listed in Table 1.1 is provided. How

a ROC curve relates ATR parameters is shown. Finally, how to setup an optimal

control problem is covered along with a sample formulation.

Thus far, notation for things like the battle space and the probability of at

least n̂ target attacks have been defined. To fill in the black box and setup optimal

control problems, considerably more definitions are needed.

2.1 Sequential Events Method

The purpose of the sequential events method is to produce a probability density

function that can be integrated to calculate an overall effectiveness or expected level

of collateral damage. To model the search and destroy mission, the following area

definitions which are illustrated in Figure 2.1 are needed:

AB ≡ battle space

A ≡ area covered through time t or radius r

As ≡ area covered through terminal time T or terminal radius R

dA ≡ area of sensor footprint at time t or radius r

Af ≡ As − (A+ dA)

Choosing to define the sensor footprint as the infinitesimal area dA allows for a

physical interpretation of the mathematical operation of integration. One can think

of dragging the sensor footprint over an area as an ordered search effort. For an event

of interest (e.g. attacking a target) to occur in the sensor footprint at time t, certain

events must occur prior to the event and certain events must occur after the event.

For example, if all warheads were used prior to time t, there is no way an attack
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Figure 2.1 Area Definitions.

can occur at time t. Therefore, events must be sequenced based on conditions. The

various events of interest and associated numbering scheme is defined below.

i ≡ number of false target encounters in A

j ≡ number of target encounters in A

k ≡ number of warheads available at the beginning of a mission

m ≡ number of false target attacks

M ≡ number of false targets in AB

n ≡ number of target attacks

N ≡ number of targets in AB

M ≡ events involving false target encounters

N ≡ events involving target encounters

T ≡ events where targets are correctly classified and attacked

F ≡ events where false targets are misclassified and attacked

T ≡ events where targets are misclassified and not attacked

F ≡ events where false targets are correctly classified and not attacked

For notation, the number of events occurring in a given area is subscripted

along with the applicable area. For example, n − 1 target attacks in A is denoted

Tn−1,A. To calculate the probability of at least a certain number of attacks, one
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needs to know the probability of an exact number of attacks. Decker showed one

must distinguish between the case where all warheads are used and the case where

warheads are left over [15]. The probability of exactly m false target attacks and

n target attacks when m + n = k is denoted P
(m+n=k)
m,n . The probability of exactly

m false target attacks and n target attacks when m + n < k is denoted P
(m+n<k)
m,n .

Decker showed both cases are needed to calculate the overall probability of an exact

number of target and false target attacks in As. In general terms, for distributions

involving M false targets and N targets, he showed

P (m+n=k)
m,n (As) =

∫

As

[
P
(
Tn−1,A ∩ T j−(n−1),A ∩NN−1−j,Af

∩ T1,dA

)
×

P
(
Fm,A ∩ F i−m,A ∩MM−i,Af

)
+

P
(
Tn,A ∩ T j−n,A ∩NN−j,Af

)
×

P
(
Fm−1,A ∩ F i−(m−1),A ∩MM−1−i,Af

∩ F1,dA

)]
(2.1)

and

P (m+n<k)
m,n (As) =

∫

As

[
P
(
Tn−1,A ∩ T j−(n−1),A ∩ T N−1−j,Af

∩ T1,dA

)
×

P
(
Fm,A ∩ F i−m,A ∩ FM−i,Af

)
+

P
(
Tn,A ∩ T j−n,A ∩ T N−j,Af

)
×

P
(
Fm−1,A ∩ F i−(m−1),A ∩ FM−1−i,Af

∩ F1,dA

)]
, (2.2)

where i is the number of false target encounters in A and j is the number of target

encounters in A. The subtle difference between Eqs. (2.1) and (2.2) involves what

must happen after time t or radius r in Af . When m + n = k, once the final

warhead is expended, one doesn’t care if the vehicle comes across any more attack

situations. An attack situation is one where an attack would occur if the vehicle

had a limitless supply of warheads. Therefore, one only cares about the number

of remaining encounters in Af . When m + n < k, there can be no attacks in Af .
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Therefore, all subsequent target encounters must be misclassified, and all subsequent

false target encounters must be correctly classified. In other words, M’s and N ’s in

Eq. (2.1) become F ’s and T ’s respectively in Eq. (2.2).

Calculating the probability of at least a certain number of attacks involves

summing all the possible mutually exclusive probabilities. Thus,

P (m ≥ m̂) =

min (M,k−1)
∑

m=m̂





min (N,k−m−1)
∑

n=0

P (m+n<k)
m,n



+
k∑

m=max (m̂,k−N)

P
(m+n=k)
m,k−m (2.3)

and

P (n ≥ n̂) =

min (N,k−1)
∑

n=n̂





min (M,k−n−1)
∑

m=0

P (m+n<k)
m,n



+
k∑

n=max (n̂,k−M)

P
(m+n=k)
k−n,m . (2.4)

The cases when either m = 0 or n = 0 must be considered separately. Either

case results in a negative subscript in Eqs. (2.1) and (2.2). If a subscript is negative,

the corresponding probability is simply zero. When all warheads are used,

P
(m+n=k)
m=0,n=k (As) =

∫

As

[
P
(
Tk−1,A ∩ T j−(k−1),A ∩NN−1−j,Af

∩ T1,dA

)
×

P
(
F i,A ∩MM−i,Af

)]
(2.5)

and

P
(m+n=k)
m=k,n=0 (As) =

∫

As

[
P
(
Fk−1,A ∩ F i−(k−1),A ∩MM−1−i,Af

∩ F1,dA

)
×

P
(
T j,A ∩NN−j,Af

)]
(2.6)

When warheads are left over,

P
(m+n<k)
m=0,n<k (As) = P (F0,As

)

∫

As

P
(
Tn−1,A ∩ T j−(n−1),A ∩ T N−1−j,Af

∩ T1,dA

)
(2.7)
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and

P
(m+n<k)
m<k,n=0 (As) = P (T0,As

)

∫

As

P
(
Fm−1,A ∩ F i−(m−1),A ∩ FM−1−i,Af

∩ F1,dA

)
(2.8)

An equivalent way to calculate P (m ≥ m̂) is using

P (m ≥ m̂) = 1 − P (m < m̂)

= 1 −

min (M,m̂−1)
∑

m=0





min (N,k−m−1)
∑

n=0

P (m+n<k)
m,n



−

min (M,m̂−1)
∑

m=max (0,k−N)

P
(m+n=k)
m,k−m , (2.9)

and an equivalent way to calculate P (n ≥ n̂) is using

P (n ≥ n̂) = 1 − P (n < n̂)

= 1 −

min (N,n̂−1)
∑

n=0





min (M,k−n−1)
∑

m=0

P (m+n<k)
m,n



−

min (N,n̂−1)
∑

n=max (0,k−M)

P
(m+n=k)
k−n,n , (2.10)

When using either Eqs. (2.9) or (2.10), the case when both m = 0 and n = 0 must

also be considered separately. This can only occur when warheads are left over

(assuming k ≥ 1). The resulting probability is

P
(m+n<k)
m=0,n=0 (As) = P (F0,As

)P (T0,As
) (2.11)

Viewing Eqs. (2.1)-(2.11), 12 “elemental” probabilities emerge that need to be

determined regardless of the probability distributions used. Table 2.1 lists the 12

elemental probabilities and the corresponding conditions.

2.2 Elemental Probabilities for Scenarios 1-7

One can now apply Eqs. (2.1)-(2.11) for Scenarios 1-7. Details for calculat-

ing the elemental probabilities for each scenario are given in Appendix B. Prior to
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Table 2.1 Twelve Elemental Probabilities

Name Elemental Probability Condition

P1 P
(
Tn−1,A ∩ T j−(n−1),A ∩NN−1−j,Af

∩ T1,dA

)
P

(m+n=k)
m,n

P2 P
(
Fm,A ∩ F i−m,A ∩MM−i,Af

)
P

(m+n=k)
m,n

P3 P
(
Tn,A ∩ T j−n,A ∩NN−j,Af

)
P

(m+n=k)
m,n

P4 P
(
Fm−1,A ∩ F i−(m−1),A ∩MM−1−i,Af

∩ F1,dA

)
P

(m+n=k)
m,n

P5 P
(
F i,A ∩MM−i,Af

)
P

(m+n=k)
m=0,n=k

P6 P
(
T j,A ∩NN−j,Af

)
P

(m+n=k)
m=k,n=0

P7 P
(
Tn−1,A ∩ T j−(n−1),A ∩ T N−1−j,Af

∩ T1,dA

)
P

(m+n<k)
m,n

P8 P
(
Fm,A ∩ F i−m,A ∩ FM−i,Af

)
P

(m+n<k)
m,n

P9 P
(
Tn,A ∩ T j−n,A ∩ T N−j,Af

)
P

(m+n<k)
m,n

P10 P
(
Fm−1,A ∩ F i−(m−1),A ∩ FM−1−i,Af

∩ F1,dA

)
P

(m+n>k)
m,n

P11 P (F0,As
) P

(m+n<k)
m=0,n<k

P12 P (T0,As
) P

(m+n<k)
m<k,n=0

calculating an elemental probability, the probability of an exact number of classi-

fied encounters occurring up through a given time or radius for a given probability

distribution is needed. These derivations are given in Appendix A.

When a sensor encounters an object, it compares the image to a stored tem-

plate or pattern and either declares the object a target or a false target. In practice,

detected objects are classified to a certain level of discrimination. For example, one

may classify on object as either air breathing or ballistic. A finer level of discrimi-

nation may be a specific type of air-breathing or ballistic object. Regardless of the

level of discrimination, there is a point where the sensor reports a detected object as

either a target thereby authorizing an attack, or a false target thereby commanding

no attack. Sensor performance is judged by how often the sensor is correct. The

probability of a target report (PTR) is the probability the sensor correctly reports a

target when a target is encountered. The probability of a false target report (PFTR)
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is the probability the sensor correctly reports a false target when a false target is

encountered. Together, PTR and PFTR determine the entries of the binary “confu-

sion matrix” shown in Table 2.2 which can be used to determine the outcome of a

random draw each time an object is encountered in simulation.

Table 2.2 Simple Binary Confusion Matrix
Encountered Object
Target False Target

Declared Object
Target PTR 1 − PFTR

False Target 1 − PTR PFTR

The expression (1 − PTR) represents the probability the sensor reports a false

target when a target is encountered. This type of error results in a target not being

attacked. The expression (1 − PFTR) represents the probability the sensor reports a

target when a false target is encountered. This type of error results in a false target

being attacked. For this binary confusion matrix, true positive fraction is PTR, and

false positive fraction is (1 − PFTR). If multiple types of targets are involved, the

dimension of the confusion matrix can be higher [24]. This research only considers

the 2x2 confusion matrix in Table 2.2.

Allowing PTR and (1 − PFTR) to vary with time means integrals will appear

in the expressions for the elemental probabilities. To ease the appearance of the

equations and to help formulate optimal control problems, states are defined as the

integrals. The state q represents the probability of encountering a single object.

The state x represents either the unconditional probability of attacking a single

false target (for Scenarios 4 and 6) or the Poisson parameter for false target attacks

(for Scenarios 1, 2, 3, 5, and 7). The state y represents either the unconditional

probability of attacking a single target (for Scenarios 1, 3, 4, 5, 6, and 7) or the

Poisson parameter for target attacks (for Scenario 2).
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In the remainder of this section, a two-part table is provided for each sce-

nario containing the 12 elemental probabilities and corresponding state definitions.

Temporal variables are used for Scenarios 1-4 assuming the mission ends at time

T . One can readily re-derive expressions assuming spatial variables; however, area

coverage rate would no longer appear in the expressions. Search paths for Scenarios

1-4 are linear as depicted in Figure 2.2(a). Spatial variables are used for Scenarios

5-7 assuming the mission ends at radius R. One can readily re-derive expressions

for Scenarios 5-7 assuming temporal variables. Area coverage rate would enter into

the expressions in the form of Q = 2πrṙ. A state for radius r would need to be

added. Bounding Q would result in state-dependent inequality constraints that are

undefined at r = 0. For this reason, spatial variables are used for Scenarios 5-7.

Search paths for Scenarios 5-7 rely on concentric annuli as depicted in Figure 2.2(b).

(a) Linear (b) Circular

Figure 2.2 Search Patterns

2-8



Table 2.3 Scenario 1 Elemental Probabilities and State Definitions

P1 = 1
AB
PTR (t)Q (t) dt

P2 = e−x(t)
[x(t)]m

m!

P3 = [1 − y (t)]

P4 = e−x(t)
[x(t)](m−1)

(m−1)!
[1 − PFTR (t)]Q (t)α (t) dt

P5 = e−x(t)

P6 = [1 − y (t)]

P7 = 1
AB
PTR (t)Q (t) dt

P8 = e−x(T ) [x(t)]m

m!

P9 = [1 − y (T )]

P10 = e−x(T ) [x(t)](m−1)

(m−1)!
[1 − PFTR (t)]Q (t)α (t) dt

P11 = e−x(T )

P12 = [1 − y (T )]

x (t) ≡
∫ t

0
[1 − PFTR (τ)]Q (τ)α (τ) dτ

y (t) ≡
∫ t

0
1
AB
PTR (τ)Q (τ) dτ

2.2.1 Scenario 1. For this scenario, one target is uniformly distributed

among a Poisson field of false targets with density α (t). The air vehicle flies along

a straight path with area coverage rate Q (t). Table 2.3 lists the 12 elemental prob-

abilities and the corresponding state definitions.
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Table 2.4 Scenario 2 Elemental Probabilities and State Definitions

P1 = e−y(t)
[y(t)](n−1)

(n−1)!
PTR (t)Q (t) β (t) dt

P2 = e−x(t)
[x(t)]m

m!

P3 = e−y(t)
[y(t)]n

n!

P4 = e−x(t)
[x(t)](m−1)

(m−1)!
[1 − PFTR (t)]Q (t)α (t) dt

P5 = e−x(t)

P6 = e−y(t)

P7 = e−y(T ) [y(t)](n−1)

(n−1)!
PTR (t)Q (t) β (t) dt

P8 = e−x(T ) [x(t)]m

m!

P9 = e−y(T ) [y(t)]n

n!

P10 = e−x(T ) [x(t)](m−1)

(m−1)!
[1 − PFTR (t)]Q (t)α (t) dt

P11 = e−x(T )

P12 = e−y(T )

x (t) ≡
∫ t

0
[1 − PFTR (τ)]Q (τ)α (τ) dτ

y (t) ≡
∫ t

0
PTR (τ)Q (τ) β (τ) dτ

2.2.2 Scenario 2. For this scenario, there is a Poisson field of false targets

with density α (t) and a Poisson field of targets with density β(t). The air vehicle flies

along a straight path with area coverage rate Q (t). Table 2.4 lists the 12 elemental

probabilities and the corresponding state definitions.

2-10



Table 2.5 Scenario 3 Elemental Probabilities and State Definitions

P1 =
∑N−1

j=n−1

{(
N−1
j

)(
j

n−1

)
[y (t)]n−1 [q (t) − y (t)]j−(n−1) [1 − q (t)]N−1−j

}

×

N
AB
PTR (t)Q (t) dt

P2 = e−x(t)
[x(t)]m

m!

P3 =
∑N

j=n

{(
N

j

)(
j

n

)
[y (t)]n [q (t) − y (t)]j−n [1 − q (t)]N−j

}

P4 = e−x(t)
[x(t)](m−1)

(m−1)!
[1 − PFTR (t)]Q (t)α (t) dt

P5 = e−x(t)

P6 = [1 − y (t)]N

P7 =
∑N−1

j=n−1

{(
N−1
j

)(
j

n−1

)
[y (t)]n−1 [q (t) − y (t)]j−(n−1) ×

[1 − q (t) − y (T ) + y (t)]N−1−j
}

N
AB
PTR (t)Q (t) dt

P8 = e−x(T ) [x(t)]m

m!

P9 =
∑N

j=n

{(
N

j

)(
j

n

)
[y (t)]n [q (t) − y (t)]j−n [1 − q (t) − y (T ) + y (t)]N−j

}

P10 = e−x(T ) [x(t)](m−1)

(m−1)!
[1 − PFTR (t)]Q (t)α (t) dt

P11 = e−x(T )

P12 = [1 − y (T )]N

q (t) ≡
∫ t

0
1
AB
Q (τ) dτ

x (t) ≡
∫ t

0
[1 − PFTR (τ)]Q (τ)α (τ) dτ

y (t) ≡
∫ t

0
1
AB
PTR (τ)Q (τ) dτ

2.2.3 Scenario 3. For this scenario, N targets are uniformly distributed

among a Poisson field of false targets with density α (t). The air vehicle flies along

a straight path with area coverage rate Q (t). Table 2.5 lists the 12 elemental prob-

abilities and the corresponding state definitions. As stated previously, Scenario 1 is

a special case of Scenario 3 with N = 1.
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Table 2.6 Scenario 4 Elemental Probabilities and State Definitions

P1 =
∑N−1

j=n−1

{(
N−1
j

)(
j

n−1

)
[y (t)]n−1 [q (t) − y (t)]j−(n−1) [1 − q (t)]N−1−j

}

×

N
AB
PTR (t)Q (t) dt

P2 =
∑M

i=m

{(
M

i

)(
i

m

)
[x (t)]m [q (t) − x (t)]i−m [1 − q (t)]M−i

}

P3 =
∑N

j=n

{(
N

j

)(
j

n

)
[y (t)]n [q (t) − y (t)]j−n [1 − q (t)]N−j

}

P4 =
∑M−1

i=m−1

{(
M−1
i

)(
i

m−1

)
[x (t)]m−1 [q (t) − x (t)]i−(m−1) [1 − q (t)]M−1−i

}

×

M
AB

[1 − PFTR (t)]Q (t) dt

P5 = [1 − x (t)]M

P6 = [1 − y (t)]N

P7 =
∑N−1

j=n−1

{(
N−1
j

)(
j

n−1

)
[y (t)]n−1 [q (t) − y (t)]j−(n−1) ×

[1 − q (t) − y (T ) + y (t)]N−1−j
}

N
AB
PTR (t)Q (t) dt

P8 =
∑M

i=m

{(
M

i

)(
i

m

)
[x (t)]m [q (t) − x (t)]i−m [1 − q (t) − x (T ) + x (t)]M−i

}

P9 =
∑N

j=n

{(
N

j

)(
j

n

)
[y (t)]n [q (t) − y (t)]j−n [1 − q (t) − y (T ) + y (t)]N−j

}

P10 =
∑M−1

i=m−1

{(
M−1
i

)(
i

m−1

)
[x (t)]m−1 [q (t) − x (t)]i−(m−1) ×

[1 − q (t) − x (T ) + x (t)]M−1−i
}

M
AB

[1 − PFTR (t)]Q (t) dt

P11 = [1 − x (T )]M

P12 = [1 − y (T )]N

q (t) ≡
∫ t

0
1
AB
Q (τ) dτ

x (t) ≡
∫ t

0
1
AB

[1 − PFTR (τ)]Q (τ) dτ

y (t) ≡
∫ t

0
1
AB
PTR (τ)Q (τ) dτ

2.2.4 Scenario 4. For this scenario, N targets and M false targets are

uniformly distributed in the battle space. The air vehicle flies along a straight path

with area coverage rate Q (t). Table 2.6 lists the 12 elemental probabilities and the

corresponding state definitions.
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Table 2.7 Scenario 5 Elemental Probabilities and State Definitions

P1 =
∑N−1

j=n−1

{(
N−1
j

)(
j

n−1

)
[y (r)]n−1 [qy (r) − y (r)]j−(n−1) [1 − qy (r)]N−1−j

}

×NPTR (r) r
σ2

y
e
−

r2

2σ2
y dr

P2 = e−x(r)
[x(r)]m

m!

P3 =
∑N

j=n

{(
N

j

)(
j

n

)
[y (r)]n [qy (r) − y (r)]j−n [1 − qy (r)]N−j

}

P4 = e−x(r)
[x(r)](m−1)

(m−1)!
[1 − PFTR (r)] 2πrα (r) dr

P5 = e−x(r)

P6 = [1 − y (r)]N

P7 =
∑N−1

j=n−1

{(
N−1
j

)(
j

n−1

)
[y (r)]n−1 [qy (r) − y (r)]j−(n−1) ×

[1 − qy (r) − y (R) + y (r)]N−1−j
}

NPTR (r) r
σ2

y
e
−

r2

2σ2
y dr

P8 = e−x(R) [x(r)]m

m!

P9 =
∑N

j=n

{(
N

j

)(
j

n

)
[y (r)]n [qy (r) − y (r)]j−n [1 − qy (r) − y (R) + y (r)]N−j

}

P10 = e−x(R) [x(r)](m−1)

(m−1)!
[1 − PFTR (r)] 2πrα (r) dr

P11 = e−x(R)

P12 = [1 − y (R)]N

qy (r) ≡
∫ r

0
ρ

σ2
y
e
−

ρ2

2σ2
y dρ

x (r) ≡
∫ r

0
[1 − PFTR (ρ)] 2πρα (ρ) dρ

y (r) ≡
∫ r

0
PTR (ρ) ρ

σ2
y
e
−

ρ2

2σ2
y dρ

2.2.5 Scenario 5. For this scenario, N targets are normally distributed

among a Poisson field of false targets with density α (ρ). Normally-distributed refers

to a circular normal distribution with standard deviation σy. The search area As is a

circular disc of radius R. The air vehicle searches the disc using concentric annuli of

radius r and thickness dr. The search begins at the origin of the disc and progresses

outward. Table 2.7 lists the 12 elemental probabilities and the corresponding state

definitions.
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Table 2.8 Scenario 6 Elemental Probabilities and State Definitions

P1 =
∑N−1

j=n−1

(
N−1
j

)(
j

n−1

)
[y (r)]n−1 [qy (r) − y (r)]j−(n−1) [1 − qy (r)]N−1−j

×NPTR (r) r
σ2

y
e
−

r2

2σ2
y dr

P2 =
∑M

i=m

(
M

i

)(
i

m

)
[x (r)]m [qx (r) − x (r)]j−n [1 − qx (r)]M−i

P3 =
∑N

j=n

(
N

j

)(
j

n

)
[y (r)]n [qy (r) − y (r)]j−n [1 − qy (r)]N−j

P4 =
∑M−1

i=m−1

(
M−1
i

)(
i

m−1

)
[x (r)]m−1 [qx (r) − x (r)]i−(m−1) [1 − qx (r)]M−1−i

×M [1 − PFTR (r)] r
σ2

x
e
−

r2

2σ2
x dr

P5 = [1 − x (r)]M

P6 = [1 − y (r)]N

P7 =
∑N−1

j=n−1

(
N−1
j

)(
j

n−1

)
[y (r)]n−1 [qy (r) − y (r)]j−(n−1) ×

[1 − qy (r) − y (R) + y (r)]N−1−j
NPTR (r) r

σ2
y
e
−

r2

2σ2
y dr

P8 =
∑M

i=m

(
M

i

)(
i

m

)
[x (r)]m [qx (r) − x (r)]i−m [1 − qx (r) − x (R) + x (r)]M−i

P9 =
∑N

j=n

(
N

j

)(
j

n

)
[y (r)]n [qy (r) − y (r)]j−n [1 − qy (r) − y (R) + y (r)]N−j

P10 =
∑M−1

i=m−1

(
M−1
i

)(
i

m−1

)
[x (r)]m−1 [qx (r) − x (r)]i−(m−1) ×

[1 − qx (r) − x (R) + x (r)]M−1−i
M [1 − PFTR (r)] r

σ2
x
e
−

r2

2σ2
x dr

P11 = [1 − x (R)]M

P12 = [1 − y (R)]N

qx (r) ≡
∫ r

0
ρ

σ2
x
e
−

ρ2

2σ2
x dρ qy (r) ≡

∫ r

0
ρ

σ2
y
e
−

ρ2

2σ2
y dρ

x (r) ≡
∫ r

0
[1 − PFTR (ρ)] ρ

σ2
x
e
−

ρ2

2σ2
x dρ

y (r) ≡
∫ r

0
PTR (ρ) ρ

σ2
y
e
−

ρ2

2σ2
y dρ

2.2.6 Scenario 6. For this scenario, N targets and M false targets are

normally distributed (circular) with standard deviations σy and σx respectively. Ta-

ble 2.8 lists the 12 elemental probabilities and the corresponding state definitions.
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Table 2.9 Scenario 7 Elemental Probabilities and State Definitions

P1 = PTR (r) r
σ2

y
e
−

r2

2σ2
y dr

P2 = e−x(r)
[x(r)]m

m!

P3 = [1 − y (r)]

P4 = e−x(r)
[x(r)](m−1)

(m−1)!
[1 − PFTR (r)] 2πrα (r) dr

P5 = e−x(r)

P6 = [1 − y (r)]

P7 = PTR (r) r
σ2

y
e
−

r2

2σ2
y dr

P8 = e−x(R) [x(r)]m

m!

P9 = [1 − y (R)]

P10 = e−x(R) [x(r)](m−1)

(m−1)!
[1 − PFTR (r)] 2πrα (r) dr

P11 = e−x(R)

P12 = [1 − y (R)]

x (r) ≡
∫ r

0
[1 − PFTR (ρ)] 2πρα (ρ) dρ

y (r) ≡
∫ r

0
PTR (ρ) ρ

σ2
y
e
−

ρ2

2σ2
y dρ

2.2.7 Scenario 7. This scenario is the specific case of Scenario 5 when

N = 1. Table 2.9 lists the 12 elemental probabilities and the corresponding state

definitions.
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2.3 System Operating Characteristic

Everything needed to calculate P (m ≥ m̂) and P (n ≥ n̂) has been provided.

How the ATR parameters are related is now examined. The parameters PTR and

PFTR characterize the sensor’s performance and are not independent. They are

often linked by a Receiver Operating Characteristic (ROC) curve. A mathematical

representation of the ROC curve produces a graph of true positive fraction (PTR)

versus false positive fraction (1 − PFTR) that starts at (0, 0), then monotonically

increases to (1, 1). The ROC curve model adapted from Ref. [36] is used in this

reasearch:

(1 − PFTR) =
PTR

(1 − c)PTR + c
(2.12)

where the parameter, c ∈ [1,∞), will depend on the sensor and data processing

algorithm. It will also depend on the vehicle speed (dwell time), and engagement

geometry, which includes flight altitude and look angle. A family of ROC curves
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Figure 2.3 Family of ROC Curves.

parameterized by c is shown in Figure 2.3. As c increases, the ROC improves. As

c→ ∞, the area under the curve approaches unity indicating perfect classification.

For a given sensor and algorithm with a constant area coverage rate, the op-

erating point on a ROC curve is determined by the sensor’s threshold for declaring
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target. Although typically it must be determined from experimentation, it will be

assumed the relation between PTR and (1 − PFTR) is known, and can be approxi-

mated using Eq. (2.12). Thus, our goal is finding the optimal probability of a target

report (P ∗

TR) – either constant, or as a function of elapsed time or space covered.

Optimal solutions will be denoted with ∗.

If area coverage rate is allowed to vary, the operating point in essence moves

from ROC curve to ROC curve. Better performance is expected at slower area

coverage rates, since longer dwell times allow for more sensing and data processing.

Conversely, worse performance is expected at higher area coverage rates. One way to

model this effect is having the parameter c be inversely proportional to area coverage

rate Q. It is assumed experimental results will yield a scaled nominal area coverage

rate, Qn, such that when Qn is divided by Q, the ROC curve is approximated using

the ROC parameter

c =
Qn

Q
(2.13)

in Eq. (2.12). There is still the requirement of c > 1, thus Q < Qn. The goal is to

find the optimal combination of PTR and Q – either constant, or as a function of

elapsed time or space covered. The combination of PTR and Q establishes a system

operating characteristic.

2.4 Optimal Control Formulation

An operator wants the expected number of target attacks to be high and the

expected number of false target attacks to be low. One is interested in a priori pre-

dictions of effectiveness and thus use P (n ≥ n̂) and P (m ≥ m̂). Unfortunately due

to the ROC, adjusting the sensor threshold to increase the number of target attacks

also increases the number of false target attacks. Thus, the operator’s objectives

are competing, and a trade-off situation arises. To ensure P (m ≥ m̂) stays low, a

constraint is imposed on it. The general optimization problem statement is then
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Max: P (n ≥ n̂)

subj to: P (m ≥ m̂) ≤ b

where the upper bound b, threshold for target attacks n̂, threshold for false target

attacks m̂, and mission duration T are set by the designer or mission planner. The

decision variables are PTR and Q.

Everything needed to calculate P (n ≥ n̂) and P (m ≥ m̂) has been provided

as well as a way to relate PTR and (1 − PFTR). The problem can now be formulated

as an optimal control problem whose solution method is given in various text books.

The notation used by Bryson and Ho [8] is used and the problem is posed in their

standard form which is

Min: J [s (t) ,u (t)] = φ [s (T )] +
∫ T

0
L [s (t) ,u (t) , t] dt

Subj to: ṡ = f [s (t) ,u (t) , t], s (0) = 0

Since their standard form involves minimizing a cost functional J , the objective

function (maximizing P (n ≥ n̂)) is multiplied by minus one. The integrand L then

becomes the negative of the probability density function for P (n ≥ n̂). The state

vector s(t) consists of the states defined for calculating elemental probabilities (q (t),

x (t), and y (t)) augmented with a state representing P (m ≥ m̂), which is denoted

z(t) for brevity. Initial conditions on the states are zero. The terminal conditions

on q, x, and y are free, whereas z (T ) ≤ b. The vector f [s (t) ,u (t) , t] specifies the

dynamics. The control vector u(t) consists of the decision variables PTR and Q. The

performance objective φ is a function of the the final states.

The Pontryagin Maximum Principle [8] is invoked, which involves forming the

Hamiltonian, H, given by

H [s (t) ,u (t) , t] = L [s (t) ,u (t) , t] + λT (t) f [s (t) ,u (t) , t] (2.14)
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where λ is the vector of costates. Note: T is mission duration and T is the transpose

operator. The costate differential equations are

λ̇T = −
∂H

∂s
= −

∂L

∂s
− λT∂f

∂s
. (2.15)

The constraint involving z amounts to a “path constraint”, which results in λz being

constant for all time [8]. Since q (T ), x (T ), and y (T ) are free, λq (T ) = λx (T ) =

λy (T ) = 0. Finally, the optimal control is derived using the first-order necessary

condition
∂H

∂u
= 0. (2.16)

The differential equations from this formulation are coupled, so closed-form

solutions do not exist. Instead, the state and costate equations must be numerically

integrated. Two-point-boundary-value problems of this form can be solved using a

“shooting method” [7] or a discrete-time, gradient-based solver such as Matlab’sr

fmincon routine.

2.5 Sample Formulation

To make sense of everything covered in Sections 2.1-2.4, a sample formulation

is provided. But first, here is a recap of where the various parameters come from.

Designer or Mission Planner: m̂, n̂, b, k, T , R

Order of Battle Intelligence: α, β, N , M , σx, σy, AB

Performance Specifications: c, Qn, Qmin, Qmax

Let m̂ = n̂ = 1, and assume T and b are designated. In addition, assume both

the number of targets N and the number of false targets M are both greater than

the number of warheads k. At this point, the actual values for T , b, N , M , and k

are not needed and can remain parameters. The optimization problem becomes
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Max: P (n ≥ 1)

subj to: P (m ≥ 1) ≤ b

Using Eqs. 2.10 and 2.9 gives

P (n ≥ 1) = 1 − P (n = 0)

= 1 −
k−1∑

m=0

P
(m+n<k)
m,0 − P

(m+n=k)
k,0 (2.17)

and

P (m ≥ 1) = 1 − P (m = 0)

= 1 −
k−1∑

n=0

P
(m+n<k)
0,n − P

(m+n=k)
0,k . (2.18)

Substituting elemental probabilities gives

P (n ≥ 1) = 1 − P11P12 −
k−1∑

m=1

∫ T

0

P10P12 −

∫ T

0

P4P6 (2.19)

and

P (m ≥ 1) = 1 − P11P12 −
k−1∑

n=1

∫ T

0

P7P11 −

∫ T

0

P1P5. (2.20)

Bryson and Ho [8] notation becomes

φ [s (T )] = P11P12 (2.21)

L [s (t) ,u (t)] dt = P4P6 +
k−1∑

m=1

P10P12 (2.22)

u (t) = [PTR (t) Q (t)]T (2.23)

s (t) = [q (t) x (t) y (t) z (t)]T (2.24)
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where q (t), x (t), and y (t) are defined once a scenario is selected, and

z (t) = 1 − P11P12 −

∫ T

0

(

P1P5 +
k−1∑

n=1

P7P11

)

(2.25)

For example, if Scenario 2 elemental probabilities are used, then

x (t) =

∫ t

0

[1 − PFTR (τ)]Q (τ)α (τ) dτ (2.26)

y (t) =

∫ t

0

PTR (τ)Q (τ) β (τ) dτ (2.27)

φ [s (T )] = e−x(T )e−y(T ) (2.28)

L [s (t) ,u (t)] = e−x(t)
[x (t)](m−1)

(m− 1)!
[1 − PFTR (t)]Q (t)α (t) e−y(t)+

k−1∑

m=1

e−x(T ) [x (t)](m−1)

(m− 1)!
[1 − PFTR (t)]Q (t)α (t) e−y(T ) (2.29)

z (t) = 1 − e−x(t)e−y(t) −

∫ t

0

{

e−y(τ)
[y (τ)](n−1)

(n− 1)!
PTR (τ)Q (τ) β (τ) e−x(τ) +

k−1∑

n=1

e−y(t)
[y (τ)](n−1)

(n− 1)!
PTR (τ)Q (τ) β (τ) e−x(t)

}

dτ (2.30)

Everything thus far was accomplished without specifying a ROC model. If constant

area coverage rate is assumed constant and Eq. (2.12) is used for ROC model, then

x (t) =

∫ t

0

[
PTR (τ)

(1 − c)PTR (τ) + c

]

wvα (τ) dτ (2.31)

y (t) =

∫ t

0

PTR (τ)wvβ (τ) dτ (2.32)

φ [s (T )] = e−x(T )e−y(T ) (2.33)
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L [s (t) ,u (t)] = e−x(t)
[x (t)](m−1)

(m− 1)!

[
PTR (t)

(1 − c)PTR (t) + c

]

wvα (t) e−y(t)+

k−1∑

m=1

e−x(T ) [x (t)](m−1)

(m− 1)!

[
PTR (t)

(1 − c)PTR (t) + c

]

wvα (t) e−y(T ) (2.34)

z (t) = 1 − e−x(t)e−y(t) −

∫ t

0

{

e−y(τ)
[y (τ)](n−1)

(n− 1)!
PTR (τ)wvβ (τ) e−x(τ) +

k−1∑

n=1

e−y(t)
[y (τ)](n−1)

(n− 1)!
PTR (τ)wvβ (τ) e−x(t)

}

dτ (2.35)

In this case, the only control variable is PTR. The densities α (t) and β (t) would

be specified from the order of battle intelligence. The ROC parameter c would be

taken from the sensor performance specification for the given area coverage rate.

This completes the sample formulation. The solution can be found using a shooting

method or a discrete-time, gradient-based solver. The system effectiveness would be

known along with the schedule for sensor threshold. While jumping straight to a

numerical solver may be tempting, insight would be lost into the how the solution

should behave. Thus in Chapter III, the optimal control is analytically calculated

using ∂H
∂u

= 0 for tractable instances of Scenarios 1, 2, and 7.
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III. Analysis

In this chapter, analytic conclusions are provided for the munition and sensor craft

problems for Scenarios 1, 2, and 7. Using these tractable instances, the problem can

be bounded and insight can be gained prior to calculating numerical solutions. Ten

theorems are presented from which the following conclusions are drawn:

1. For Scenarios 1 and 2 with k = 1 and no constraint on P (m ≥ m̂), if T , Q,

α, and β are constant, the unbounded P ∗

TR is monotonically increasing with time.

2. For Scenarios 1, 2, and 7 with k = ∞, n̂ = 1, and no constraint on

P (m ≥ m̂), if T (or R), Q, α, and β are constant, the bounded P ∗

TR = P ∗

TRmax
= 1.

3. For Scenarios 1 and 2 with k = ∞ and P (m ≥ m̂) = b, if T , Q, α, and β

are constant, then P ∗

TR is constant for all time.

4. For Scenarios 1 and 2 with k = 1 or k = ∞, if T , α, and β are constant and

Q (t) is unbounded, then the unbounded P ∗

TR is given by

P ∗

TR (t) =
Qn

2Qn −Q∗ (t)
(3.1)

5. For Scenario 7 with k = ∞ and P (m ≥ m̂) = b, if R and α are constant,

then P ∗

TR is monotonically decreasing with radius.

The remainder of this chapter contains detailed calculations required for the 10

theorems. The general approach involves forming a Hamiltonian for each problem,

then solving ∂H
∂u

= 0 to determine the form of the optimal control. Next the derivative

of the optimal control with respect to time or radius is taken to determine any trends

(e.g. increasing, decreasing, or constant). The reader can skip to Chapter IV for

applications that demonstrate the conclusions above.
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3.1 Scenario 1: Fixed T , Fixed Q, Variable PTR

For Scenario 1, one target is uniformly distributed among a Poisson field of

false targets with density α, which is assumed constant. The air vehicle flies along

a straight path with area coverage rate Q (t). For now Q is constant and specified.

Therefore, the only decision variable is PTR. Constant Q implies the ROC parameter

c is constant.

3.1.1 Munition Problem. To start, in addition to assuming T , Q, and α

are constant, there is no constraint on P (m ≥ m̂).

Theorem 1 (Scenario 1 with k = 1 and no constraint on P (m ≥ m̂)) If T , Q,

and α are constant, the unbounded P ∗

TR is monotonically increasing.

Proof: Let the state x be

x (t) =

∫ t

0

αQ [1 − PFTR (τ)] dτ. (3.2)

The corresponding L is

L = −
Q

AB
PTR (t) e−x(t). (3.3)

The derivative of the state is

ẋ (t) = αQ [1 − PFTR (t)] . (3.4)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H = −
Q

AB
PTRe

−x + λxαQ
PTR

(1 − c)PTR + c
(3.5)

and the costate differential equation becomes

λ̇x (t) = −
Q

AB
PTR (t) e−x(t). (3.6)
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Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= −

Q

AB
e−x +

λxαQc

[(1 − c)PTR + c]2
(3.7)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (t) =
c±

√

λx (t)αcABex(t)

c− 1
. (3.8)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1]

for all time. Taking the derivative of Eq. (3.8) with respect to t gives

Ṗ ∗

TR (t) =
−1

2 (c− 1)

√

αcAB

λx (t) ex(t)

[

λx (t) ẋ (t) + λ̇x (t)
]

ex(t). (3.9)

Using Eqs. (3.4) and (3.6) for ẋ (t) and λ̇x (t) yields

Ṗ ∗

TR (t) = Q

√

αe−x(t)

4cABλx (t)
[P ∗

TR (t)]2 > 0. (3.10)

�

At the terminal point where λx (T ) = 0, P ∗

TR (T ) = c
c−1

> 1. Thus, the

constraint PTR ≤ 1 becomes active prior to the end and remains active until time

T . See Appendix D for further analysis on when the constraint becomes active.

This represents a “go for broke” tactic in the end game. This strategy of starting

conservative then gradually increasing aggressiveness until the end, where an all out

effort is tried, is common in game theory. Without a constraint on false target

attacks, the system has nothing to lose by declaring all objects as targets near the

end.
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Next, the effects of adding a constraint on false target attacks is examined.

With a constraint on P (m ≥ m̂), the following states are needed:

x (t) =

∫ t

0

αQ [1 − PFTR (τ)] dτ (3.11)

y (t) =

∫ t

0

Q

AB
PTR (τ) dτ (3.12)

z (t) =

∫ t

0

αQ [1 − PFTR (τ)] [1 − y (τ)] e−x(τ)dτ. (3.13)

The corresponding L is still

L = −
Q

AB
PTR (t) e−x(t). (3.14)

The derivatives of the states are

ẋ (t) = αQ [1 − PFTR (t)] (3.15)

ẏ (t) =
Q

AB
PTR (t) (3.16)

ż (t) = αQ [1 − PFTR (t)] [1 − y (t)] e−x(t) (3.17)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H =
(
λy − e−x

) Q

AB
PTR + αQ

PTR

(1 − c)PTR + c

[
λx + λz (1 − y) e−x

]
(3.18)

and the costate differential equations become

λ̇x (t) = λzαQ
PTR (t)

(1 − c)PTR (t) + c
[1 − y (t)] e−x(t) −

Q

AB
PTR (t) e−x(t) (3.19)

λ̇y (t) = λzαQ
PTR (t)

(1 − c)PTR (t) + c
e−x(t) (3.20)

λ̇z (t) = 0 (3.21)
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Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
=
(
λy − e−x

) Q

AB
+

[λx + λz (1 − y) e−x]αQc

[(1 − c)PTR + c]2
(3.22)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (t) =

c±

√

{λx(t)+λz [1−y(t)]e−x(t)}αcAB

[e−x(t)
−λy(t)]

c− 1
. (3.23)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1]

for all time. While taking the derivative of Eq. (3.23) with respect to t is possible,

there are too many terms involved to discern any trends. Nonetheless, Eq. (3.23)

shows the form of the optimal control.

3.1.2 Sensor Craft Problem. The sensor craft problem does not condition

P (n ≥ n̂) on the number of previous attacks. For Scenario 1,

P (n = 1) =

∫ T

0

Q

AB
PTR (t) dt. (3.24)

Theorem 2 (Scenario 1 with k = ∞ and no constraint on P (m ≥ m̂)) If T ,

Q, and α are constant, the optimal constrained solution is P ∗

TR = P ∗

TRmax
= 1.

Proof : With no constraint on P (m ≥ m̂), the optimal control is clearly P ∗

TR =

P ∗

TRmax
= 1 for all time.

�

This is not a practical solution, since all false targets would be declared targets and

attacked. With an infinite amount of warheads and no constraint on false target

attacks, there is no reason not to attack every object encountered.
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Next, the effect of adding a constraint on false target attacks is examined.

The sensor craft problem does not condition P (m ≥ m̂) on the number of previous

attacks.

Theorem 3 (Scenario 1 with k = ∞, m̂ = 1, and P (m ≥ 1) = b) If T , Q, and

α are constant, P ∗

TR (t) = −c ln [1−b]
(1−c) ln [1−b]+αQT

.

Proof : With a constraint on P (m ≥ m̂), the states become

x (t) =

∫ t

0

αQ [1 − PFTR (τ)] dτ (3.25)

z (t) = 1 −
m̂−1∑

m=0

[x (t)]m

m!
e−x(t) (3.26)

The corresponding L is

L = −
Q

AB
PTR (t) . (3.27)

The derivatives of the states are

ẋ (t) = αQ [1 − PFTR (t)] (3.28)

ż (t) = αQ [1 − PFTR (t)]

{

[x (t)](m̂−1)

(m̂− 1)!

}

e−x(t) (3.29)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H = −
Q

AB
PTR + αQ

PTR

(1 − c)PTR + c

{

λx + λz

[
x(m̂−1)

(m̂− 1)!

]

e−x
}

(3.30)

and the costate differential equations become

λ̇x (t) = −λzαQ
PTR (t)

(1 − c)PTR (t) + c

[
(m̂− 1)

x (t)
− 1

]{

[x (t)](m̂−1)

(m̂− 1)!

}

e−x(t)(3.31)

λ̇z (t) = 0 (3.32)
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Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= −

Q

AB
+
αQc

{

λx + λz

[
x(m̂−1)

(m̂−1)!

]

e−x
}

[(1 − c)PTR + c]2
(3.33)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (t) =

c±

√
{

λx (t) + λz

[
[x(t)](m̂−1)

(m̂−1)!

]

e−x(t)
}

αcAB

c− 1
. (3.34)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1]

for all time. Taking the derivative of Eq. (3.34) with respect to t gives

Ṗ ∗

TR (t) =
−1

2 (c− 1)

√
√
√
√

αcAB
{

λx (t) + λz

[
[x(t)](m̂−1)

(m̂−1)!

]

e−x(t)
} ×

{

λ̇x (t) + λzẋ (t)

[
(m̂− 1)

x (t)
− 1

]{

[x (t)](m̂−1)

(m̂− 1)!

}

e−x(t)

}

. (3.35)

Using Eq. (3.28) for ẋ (t) with Eq. (2.12) for the ROC model yields

Ṗ ∗

TR (t) = 0 (3.36)

implying P ∗

TR is constant for all time. When target and false target densities remain

fixed throughout the search effort and the amount of warheads is infinite, the problem

becomes an infinite horizon problem, where optimal solutions are constant. Consider

the case when m̂ = 1. For constant T , Q, α, and PTR,

P (m ≥ 1) = 1 − e−αQT (1−PFTR) ≤ b. (3.37)
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Applying Eq. (2.12) for the ROC model and assuming the constraint is active, the

optimal control is

P ∗

TR (t) =
−c ln [1 − b]

(1 − c) ln [1 − b] + αQT
. (3.38)

�

3.2 Scenario 1: Fixed T , Variable Q, Variable PTR

The assumption that Q is constant is now relaxed. Therefore, the ROC para-

meter c is no longer constant. Equation (2.13), where c (t) ≡ Qn

Q(t)
is used. Recall Qn

is a constant. The decision variables are Q and PTR.

Theorem 4 (Scenario 1 with k = 1 or k = ∞) If T and α are constant and Q

is unbounded, the unbounded P ∗

TR (t) = Qn

2Qn−Q∗(t)
.

Proof : Consider both the munition and sensor craft problems.

3.2.1 Munition Problem. For k = 1, dynamic Q, and dynamic PTR, the

states becomes

x (t) =

∫ t

0

αQ (τ) [1 − PFTR (τ)] dτ (3.39)

y (t) =

∫ t

0

1

AB
Q (τ)PTR (τ) dτ (3.40)

z (t) =

∫ t

0

αQ (τ) [1 − PFTR (τ)] [1 − y (τ)] e−x(τ)dτ. (3.41)

The corresponding L is

L = −
1

AB
Q (t)PTR (t) e−x(t). (3.42)
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The derivatives of the states are

ẋ (t) = αQ (t) [1 − PFTR (t)] (3.43)

ẏ (t) =
1

AB
Q (t)PTR (t) (3.44)

ż (t) = αQ (t) [1 − PFTR (t)] [1 − y (t)] e−x(t) (3.45)

Equation (2.12) becomes

[1 − PFTR (t)] =
Q (t)PTR (t)

Q (t)PTR (t) +Qn [1 − PTR (t)]
. (3.46)

Using Eq. (3.46), the Hamiltonian becomes

H =
(
λy − e−x

) 1

AB
QPTR + α

Q2PTR

QPTR +Qn (1 − PTR)

[
λx + λz (1 − y) e−x

]
(3.47)

and the costate differential equations become

λ̇x = λzα
Q2 (t)PTR (t)

Q (t)PTR (t) +Qn [1 − PTR (t)]
[1 − y (t)] e−x(t)

−
1

AB
Q (t)PTR (t) e−x(t) (3.48)

λ̇y = λzα
Q2 (t)PTR (t)

Q (t)PTR (t) +Qn [1 − PTR (t)]
e−x(t) (3.49)

λ̇z = 0 (3.50)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= Q

{
(
λy − e−x

) 1

AB
+

[λx + λz (1 − y) e−x]QnαQ

[QPTR +Qn (1 − PTR)]2

}

(3.51)

Taking the partial derivative of H with respect to the decision variable Q gives

∂H

∂Q
= PTR

{
(
λy − e−x

) 1

AB
+ α

[
λx + λz (1 − y) e−x

] Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2

}

(3.52)

3-9



Ignoring the trivial solutions PTR = 0 and Q = 0, the necessary conditions become

{
(
λy − e−x

) 1

AB
+

[λx + λz (1 − y) e−x]QnαQ

[QPTR +Qn (1 − PTR)]2

}

= 0 (3.53)

and

{
(
λy − e−x

) 1

AB
+ α

[
λx + λz (1 − y) e−x

] Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2

}

= 0 (3.54)

Subtracting Eq. (3.53) from Eq. (3.54) gives

α
[
λx + λz (1 − y) e−x

] Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2
−

[λx + λz (1 − y) e−x]QnαQ

[QPTR +Qn (1 − PTR)]2

= 0 (3.55)

Grouping like terms yields

αQ
[
λx + λz (1 − y) e−x

] QPTR − 2QnPTR +Qn

[QPTR +Qn (1 − PTR)]2
= 0 (3.56)

resulting in the necessary condition

[
λx + λz (1 − y) e−x

]
[QPTR − 2QnPTR +Qn] = 0. (3.57)

Thus, either

P ∗

TR (t) =
Qn

2Qn −Q∗ (t)
(3.58)

or

λx (t) = −λz [1 − y (t)] e−x(t). (3.59)

In the case where P ∗

TR (t) = Qn

2Qn−Q∗(t)
, insight can be gained looking to the relations

between the parameters. From the requirement that c > 1, Q∗ (t) < Qn. So as Q∗
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increases, P ∗

TR increases. Further, for Q∗ ∈ (0, Qn), P
∗

TR ∈
(

1
2
, 1
)
. In other words,

P ∗

TR (t) > 0.5 (3.60)

For Qn >> Q∗ (which is the case when c = 100), P ∗

TR ≈ 0.5 for all time. In addition,

the relation between P ∗

TR and Q∗ does not depend on α or the value of b.

The case where λx (t) = −λz [1 − y (t)] e−x(t) never occurred in practice. In ad-

dition, the case where P ∗

TR (t) = Qn

2Qn−Q∗(t)
shows up again and again in this Chapter

and in practice. Therefore, it will be the focus.

3.2.2 Sensor Craft Problem. For k = ∞, dynamic Q, and dynamic PTR,

the states become

x (t) =

∫ t

0

αQ (τ) [1 − PFTR (τ)] dτ (3.61)

z (t) = 1 −
m̂−1∑

m=0

[x (t)]m

m!
e−x(t) (3.62)

The corresponding L is

L = −
1

AB
Q (t)PTR (t) . (3.63)

The derivatives of the states are

ẋ (t) = αQ (t) [1 − PFTR (t)] (3.64)

ż (t) = αQ (t) [1 − PFTR (t)]

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x(t) (3.65)

After applying Eq. (3.46), the Hamiltonian becomes

H = −
1

AB
QPTR + α

Q2PTR

QPTR +Qn (1 − PTR)

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

(3.66)
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and the costate differential equations become

λ̇x (t) = −λzα
Q2 (t)PTR (t)

Q (t)PTR (t) +Qn [1 − PTR (t)]

[
(m̂− 1)

x (t)
− 1

](

[x (t)](m̂−1)

(m̂− 1)!

)

e−x(t)

−
1

AB
Q (t)PTR (t) (3.67)

λ̇z (t) = 0 (3.68)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= Q






−

1

AB
+

[

λx + λz

(
[x(t)](m̂−1)

(m̂−1)!

)

e−x
]

QnαQ

[QPTR +Qn (1 − PTR)]2






(3.69)

Taking the partial derivative of H with respect to the decision variable Q gives

∂H

∂Q
= PTR

{

−
1

AB
+ α

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2

}

(3.70)

Ignoring the trivial solutions PTR = 0 and Q = 0, the necessary conditions become






−

1

AB
+

[

λx + λz

(
[x(t)](m̂−1)

(m̂−1)!

)

e−x
]

QnαQ

[QPTR +Qn (1 − PTR)]2






= 0 (3.71)

and

{

−
1

AB
+ α

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2

}

= 0 (3.72)

Subtracting Eq. (3.71) from Eq. (3.72) gives

α

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2

−

[

λx + λz

(
[x(t)](m̂−1)

(m̂−1)!

)

e−x
]

QnαQ

[QPTR +Qn (1 − PTR)]2
= 0 (3.73)
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Grouping like terms yields

αQ

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

QPTR − 2QnPTR +Qn

[QPTR +Qn (1 − PTR)]2
= 0 (3.74)

resulting in the necessary condition

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

[QPTR − 2QnPTR +Qn] = 0. (3.75)

Thus, either

P ∗

TR (t) =
Qn

2Qn −Q∗ (t)
(3.76)

or

λx (t) = −λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x(t) (3.77)

Equation (3.76) is the same necessary condition as the single warhead case.

�

Thus, it appears the necessary condition in Eq. (3.76) holds regardless of the number

of warheads, false target density, or maximum allowable P (m ≥ m̂). This, of course,

assumes unbounded design variables. If Q saturates at an upper or lower bound,

the fixed-Q necessary conditions are used. Numerical examples in Chapter IV will

address the bounded-Q case.
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3.3 Scenario 2: Fixed T , Fixed Q, Variable PTR

For Scenario 2, there is a Poisson field of targets with density β and a Poisson

field of false targets with density α. Both β and α are assumed constant. The air

vehicle flies along a straight path with area coverage rateQ (t). For now Q is assumed

constant and specified. Therefore, the only decision variable is PTR. Constant Q

implies the ROC parameter c is constant.

3.3.1 Munition Problem. To start, in addition to assuming T , Q, β, and

α are constant, there is no constraint on P (m ≥ m̂).

Theorem 5 (Scenario 2 with k = 1 and no constraint on P (m ≥ m̂)) If T , Q,

β, and α are constant, the unbounded P ∗

TR is monotonically increasing.

Proof : The only state needed is

x (t) =

∫ t

0

{[1 − PFTR (τ)]α+ PTR (τ) β}Qdτ (3.78)

which is the combined Poisson parameter for both target attacks and false target

attacks. The corresponding L is

L = −PTR (t) βQe−x(t). (3.79)

The derivative of the state is

ẋ (t) = {[1 − PFTR (t)]α+ PTR (t) β}Q. (3.80)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H = −PTRβQe
−x + λx

[
PTRα

(1 − c)PTR + c
+ PTRβ

]

Q (3.81)
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and the costate differential equation becomes

λ̇x (t) = −PTR (t) βQe−x(t). (3.82)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= −βQe−x + λxQ

{
αc

[(1 − c)PTR + c]2
+ β

}

(3.83)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (t) =

c±

√
αcλx(t)

β[e−x(t)
−λx(t)]

c− 1
. (3.84)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1]

for all time. Taking the derivative of Eq. (3.84) with respect to t gives

Ṗ ∗

TR (t) =
−1

2 (c− 1)

√

αc [e−x(t) − λx (t)]

βλx (t)







e−x(t)
[

λx (t) ẋ (t) + λ̇x (t)
]

[e−x(t) − λx (t)]
2






. (3.85)

Using Eqs. (3.80) and (3.82) for ẋ (t) and λ̇x (t) yields

Ṗ ∗

TR (t) = Q

√

αβe−2x(t)

4cλx (t) [e−x(t) − λx (t)]
[P ∗

TR (t)]2 > 0. (3.86)

�

At the terminal point where λx (T ) = 0, P ∗

TR (T ) = c
c−1

> 1. Thus, the constraint

PTR ≤ 1 becomes active prior to the end and remains active until time T . This

represents the same “go for broke” tactic seen in Scenario 1.
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Next, the effect of adding a constraint on false target attacks is examined.

With a constraint on P (m ≥ m̂), the following states are needed:

x (t) =

∫ t

0

{[1 − PFTR (τ)]α+ PTR (τ) β}Qdτ (3.87)

z (t) =

∫ t

0

αQ [1 − PFTR (τ)] e−x(τ)dτ. (3.88)

The corresponding L is still

L = −PTR (t) βQe−x(t). (3.89)

The derivatives of the states are

ẋ (t) = {[1 − PFTR (t)]α+ PTR (t)β}Q (3.90)

ż (t) = αQ [1 − PFTR (t)] e−x(t) (3.91)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H =
(
λx − e−x

)
PTRβQ+

PTRαQ

(1 − c)PTR + c

[
λx + λze

−x
]

(3.92)

and the costate differential equations become

λ̇x (t) = λzαQ
PTR (t)

(1 − c)PTR (t) + c
e−x(t) − PTR (t) βQe−x(t) (3.93)

λ̇z (t) = 0 (3.94)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
=
(
λx − e−x

)
βQ+

[λx + λze
−x]αQc

[(1 − c)PTR + c]2
(3.95)
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Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (t) =

c±

√
αc[λx(t)+λze−x(t)]
β[e−x(t)

−λx(t)]

c− 1
. (3.96)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1]

for all time. While taking the derivative of Eq. (3.96) with respect to t is possible,

there are too many terms involved to discern any trends. Nonetheless, Eq. (3.96)

shows the form of the optimal control.

3.3.2 Sensor Craft Problem. The sensor craft problem does not condition

P (n ≥ n̂) on the number of previous attacks. For Scenario 2,

P (n ≥ n̂) = 1 −
n̂−1∑

n=0

[∫ T

0
PTR (t) βQdt

]n

n!
e−

R T

0 PTR(t)βQdt. (3.97)

Theorem 6 (Scenario 2 with k = ∞, n̂ = 1, and no constraint on P (m ≥ m̂))

If T , Q, and β are constant, the optimal constrained solution is P ∗

TR = P ∗

TRmax
= 1.

Proof : In the case of n̂ = 1,

P (n ≥ 1) = 1 − e−
R T

0 PTR(t)βQdt, (3.98)

and with no constraint on P (m ≥ m̂), the optimal control is clearly P ∗

TR = P ∗

TRmax
=

1 for all time.

�

This is not a practical solution, since all false targets would be declared targets and

attacked. With an infinite amount of warheads and no constraint on false target

attacks, there is no reason not to attack every object encountered.
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Next, the effect of adding a constraint on false target attacks is examined.

The sensor craft problem does not condition P (m ≥ m̂) on the number of previous

attacks.

Theorem 7 (Scenario 2 with k = ∞, m̂ = 1, and P (m ≥ 1) = b) If T , Q, and

α are constant, P ∗

TR (t) = −c ln [1−b]
(1−c) ln [1−b]+αQT

.

Proof : With a constraint on P (m ≥ m̂), the states become

x (t) =

∫ t

0

αQ [1 − PFTR (τ)] dτ (3.99)

y (t) =

∫ t

0

βQPTR (τ) dτ (3.100)

z (t) = 1 −
m̂−1∑

m=0

[x (t)]m

m!
e−x(t) (3.101)

In this formulation, φ is used and L = 0. The corresponding φ is

φ = −

{

1 −
n̂−1∑

n=0

[y (T )]n

n!
e−y(T )

}

. (3.102)

The derivatives of the states are

ẋ (t) = αQ [1 − PFTR (t)] (3.103)

ẏ (t) = βQPTR (t) (3.104)

ż (t) = αQ [1 − PFTR (t)]

{

[x (t)](m̂−1)

(m̂− 1)!

}

e−x(t) (3.105)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H = αQ
PTR

(1 − c)PTR + c

{

λx + λz

[
x(m̂−1)

(m̂− 1)!

]

e−x
}

+ λyβQPTR (3.106)
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and the costate differential equations become

λ̇x (t) =
−λzαQPTR (t)

(1 − c)PTR (t) + c

[
(m̂− 1)

x (t)
− 1

]{

[x (t)](m̂−1)

(m̂− 1)!

}

e−x(t) (3.107)

λ̇y (t) = 0 (3.108)

λ̇z (t) = 0 (3.109)

with

λy =
n̂−1∑

n=0

[
n

y (T )
− 1

]
[y (T )]n

n!
e−y(T ) (3.110)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
=
αQc

{

λx + λz

[
x(m̂−1)

(m̂−1)!

]

e−x
}

[(1 − c)PTR + c]2
+ λyβQ (3.111)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (t) =

c±

√
{

λx (t) + λz

[
[x(t)](m̂−1)

(m̂−1)!

]

e−x(t)
}

−αc
βλy

c− 1
. (3.112)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1]

for all time. Taking the derivative of Eq. (3.112) with respect to t gives

Ṗ ∗

TR (t) =
−1

2 (c− 1)

√
√
√
√

−αc

βλy

{

λx (t) + λz

[
[x(t)](m̂−1)

(m̂−1)!

]

e−x(t)
} ×

{

λ̇x (t) + λzẋ (t)

[
(m̂− 1)

x (t)
− 1

]{

[x (t)](m̂−1)

(m̂− 1)!

}

e−x(t)

}

. (3.113)

Using Eq. (3.103) for ẋ (t) with Eq. (2.12) for the ROC model and Eq. (3.107) for

λ̇x (t) yields

Ṗ ∗

TR (t) = 0 (3.114)
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implying P ∗

TR is constant for all time. When target and false target densities remain

fixed throughout the search effort and the amount of warheads is infinite, the problem

becomes an infinite horizon problem, where optimal solutions are constant. Consider

the case when m̂ = 1. For constant T , Q, α, and PTR,

P (m ≥ 1) = 1 − e−αQT (1−PFTR) ≤ b. (3.115)

Applying Eq. (2.12) for the ROC model and assuming the constraint is active, the

optimal control is

P ∗

TR (t) =
−c ln [1 − b]

(1 − c) ln [1 − b] + αQT
. (3.116)

�

Both Scenario 1 and Scenario 2 have the same Poisson field of false targets with

density α. With infinite warheads, the constraint on false target attacks will produce

the same optimal solution regardless of the target distribution. Thus, Eq. (3.116)

matches Eq. (3.38).

3.4 Scenario 2: Fixed T , Variable Q, Variable PTR

The assumption that Q is constant is now relaxed. Therefore, the ROC para-

meter c is no longer constant. Equation (2.13), where c (t) ≡ Qn

Q(t)
is used. Recall Qn

is a constant. The decision variables are Q and PTR.

Theorem 8 (Scenario 2 with k = 1 or k = ∞) If T , β, and α are constant and

Q is unbounded, the unbounded P ∗

TR (t) = Qn

2Qn−Q∗(t)
.

Proof : Consider the munition and sensor craft problems.
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3.4.1 Munition Problem. For k = 1, dynamic Q, and dynamic PTR, the

states becomes

x (t) =

∫ t

0

{[1 − PFTR (τ)]α+ PTR (τ) β}Q (τ) dτ (3.117)

z (t) =

∫ t

0

αQ (τ) [1 − PFTR (τ)] e−x(τ)dτ. (3.118)

The corresponding L is

L = −PTR (t) βQ (t) e−x(t). (3.119)

The derivatives of the states are

ẋ (t) = {[1 − PFTR (t)]α+ PTR (t)β}Q (t) (3.120)

ż (t) = αQ (t) [1 − PFTR (t)] e−x(t) (3.121)

Equation (2.12) becomes

[1 − PFTR (t)] =
Q (t)PTR (t)

Q (t)PTR (t) +Qn [1 − PTR (t)]
. (3.122)

Using Eq. (3.122), the Hamiltonian becomes

H =
(
λx − e−x

)
QPTRβ + α

Q2PTR

QPTR +Qn (1 − PTR)

[
λx + λze

−x
]

(3.123)

and the costate differential equations become

λ̇x = λzα
Q2 (t)PTR (t)

Q (t)PTR (t) +Qn [1 − PTR (t)]
e−x(t)

−Q (t)PTR (t) βe−x(t) (3.124)

λ̇z = 0 (3.125)
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Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= Q

{
(
λx − e−x

)
β +

[λx + λze
−x]QnαQ

[QPTR +Qn (1 − PTR)]2

}

(3.126)

Taking the partial derivative of H with respect to the decision variable Q gives

∂H

∂Q
= PTR

{
(
λx − e−x

)
β + α

[
λx + λze

−x
] Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2

}

(3.127)

Ignoring the trivial solutions PTR = 0 and Q = 0, the necessary conditions become

{
(
λx − e−x

)
β +

[λx + λze
−x]QnαQ

[QPTR +Qn (1 − PTR)]2

}

= 0 (3.128)

and

{
(
λx − e−x

)
β + α

[
λx + λze

−x
] Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2

}

= 0 (3.129)

Subtracting Eq. (3.128) from Eq. (3.129) gives

α
[
λx + λze

−x
] Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2
−

[λx + λze
−x]QnαQ

[QPTR +Qn (1 − PTR)]2
= 0 (3.130)

Grouping like terms, yields

αQ
[
λx + λze

−x
] QPTR − 2QnPTR +Qn

[QPTR +Qn (1 − PTR)]2
= 0 (3.131)

resulting in the necessary condition

[
λx + λze

−x
]
[QPTR − 2QnPTR +Qn] = 0. (3.132)

Thus, either

P ∗

TR (t) =
Qn

2Qn −Q∗ (t)
(3.133)
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or

λx (t) = −λze
−x(t) (3.134)

P ∗

TR (t) = Qn

2Qn−Q∗(t)
is the same necessary condition as the single warhead case for

Scenario 1. Both Scenario 1 and Scenario 2 have the same Poisson field of false

targets with density α. Thus, it makes intuitive sense the same necessary condition

should hold.

3.4.2 Sensor Craft Problem. For k = ∞, dynamic Q, and dynamic PTR,

the states become

x (t) =

∫ t

0

αQ (τ) [1 − PFTR (τ)] dτ (3.135)

y (t) =

∫ t

0

βQ (τ)PTR (τ) dτ (3.136)

z (t) = 1 −
m̂−1∑

m=0

[x (t)]m

m!
e−x(t) (3.137)

In this formulation, φ is used and L = 0. The corresponding φ is

φ = −

{

1 −
n̂−1∑

n=0

[y (T )]n

n!
e−x(T )

}

. (3.138)

The derivatives of the states are

ẋ (t) = αQ (t) [1 − PFTR (t)] (3.139)

ẏ (t) = βQ (t)PTR (t) (3.140)

ż (t) = αQ (t) [1 − PFTR (t)]

{

[x (t)](m̂−1)

(m̂− 1)!

}

e−x(t) (3.141)

After applying Eq. (3.122), the Hamiltonian becomes

H = α
Q2PTR

QPTR +Qn (1 − PTR)

{

λx + λz

[
x(m̂−1)

(m̂− 1)!

]

e−x
}

+ λyβQPTR (3.142)
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and the costate differential equations become

λ̇x (t) =
−λzαQ

2 (t)PTR (t)

Q (t)PTR (t) +Qn [1 − PTR (t)]
×

[
(m̂− 1)

x (t)
− 1

]{

[x (t)](m̂−1)

(m̂− 1)!

}

e−x(t) (3.143)

λ̇y (t) = 0 (3.144)

λ̇z (t) = 0 (3.145)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= Q







[

λx + λz

(
[x(t)](m̂−1)

(m̂−1)!

)

e−x
]

QnαQ

[QPTR +Qn (1 − PTR)]2
+ λyβ






(3.146)

Taking the partial derivative of H with respect to the decision variable Q gives

∂H

∂Q
= PTR

{

α

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2
+ λyβ

}

(3.147)

Ignoring the trivial solutions PTR = 0 and Q = 0, the necessary conditions become







[

λx + λz

(
[x(t)](m̂−1)

(m̂−1)!

)

e−x
]

QnαQ

[QPTR +Qn (1 − PTR)]2
+ λyβ






= 0 (3.148)

and

{

α

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2
+ λyβ

}

= 0 (3.149)
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Subtracting Eq. (3.148) from Eq. (3.149) gives

α

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

Q2PTR + 2QnQ (1 − PTR)

[QPTR +Qn (1 − PTR)]2

−

[

λx + λz

(
[x(t)](m̂−1)

(m̂−1)!

)

e−x
]

QnαQ

[QPTR +Qn (1 − PTR)]2
= 0 (3.150)

Grouping like terms gives

αQ

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

QPTR − 2QnPTR +Qn

[QPTR +Qn (1 − PTR)]2
= 0 (3.151)

resulting in the necessary condition

[

λx + λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x

]

[QPTR − 2QnPTR +Qn] = 0. (3.152)

Thus, either

P ∗

TR (t) =
Qn

2Qn −Q∗ (t)
(3.153)

or

λx (t) = −λz

(

[x (t)](m̂−1)

(m̂− 1)!

)

e−x(t) (3.154)

P ∗

TR (t) = Qn

2Qn−Q∗(t)
is the same necessary condition as the single warhead case.

Thus, it appears the necessary condition in Eq. (3.153) holds regardless of the

number of warheads, false target density, or maximum allowable P (m ≥ m̂). This,

of course, assumes unbounded design variables. If Q saturates at an upper or lower

bound, the fixed-Q necessary conditions are used.

3-25



3.5 Scenario 7: Fixed R, Fixed Q, Variable PTR

For Scenario 7, one target is normally distributed among a Poisson field of

false targets with density α, which is assumed constant. Normally-distributed refers

to a circular normal distribution with standard deviation σy. The search area As

is a circular disc of radius R, which is prescribed. The air vehicle searches the disc

using concentric annuli of radius r and thickness dr. Each annulus is covered using

a constant Q; therefore, the ROC parameter c is constant. As r increases, the time

it takes to cover the corresponding annulus also increases. The search begins at the

origin of the disc and progresses outward. The only decision variable is PTR.

3.5.1 Munition Problem. In additional to assuming R, Q, and α are

constant, the constraint on P (m ≥ m̂) is initially removed. In doing so, only the

following state is needed:

x (r) =

∫ r

0

2παρ [1 − PFTR (ρ)] dρ. (3.155)

The corresponding L is

L = −PTR (r)
r

σ2
y

e
−

r2

2σ2
y e−x(r). (3.156)

The derivative of the state is

ẋ (r) = 2παr [1 − PFTR (r)] . (3.157)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H = −PTR
r

σ2
y

e
−

r2

2σ2
y e−x + λx2παr

PTR

(1 − c)PTR + c
(3.158)
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and the costate differential equation becomes

λ̇x (r) = −PTR (r)
r

σ2
y

e
−

r2

2σ2
y e−x(r). (3.159)

Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= −

r

σ2
y

e
−

r2

2σ2
y e−x +

λx2παrc

[(1 − c)PTR + c]2
(3.160)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (r) =
c±

√

λx (r) 2παcσ2
ye

�
x(r)+ r2

2σ2
y

�
c− 1

. (3.161)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1].

Taking the derivative of Eq. (3.161) with respect to r gives

Ṗ ∗

TR (r) =
−1

2 (c− 1)

√
√
√
√

2παcσ2
y

λx (r) e

�
x(r)+ r2

2σ2
y

� ×

e

�
x(r)+ r2

2σ2
y

� [
λx (r) ẋ (r) + λx (r)

r

σ2
y

+ λ̇x (r)

]

. (3.162)

Using Eqs. (3.157) and (3.159) for ẋ (r) and λ̇x (r) yields

Ṗ ∗

TR (r) =

√
√
√
√

παr2

2cλx (r)σ2
ye

�
x(r)+ r2

2σ2
y

� {[P ∗

TR (r)]2 −
c

(c− 1)
λx (r) e

�
x(r)+ r2

2σ2
y

�}
.

(3.163)

Unlike Scenarios 1 and 2, there is no discernable trend. Nonetheless, Eq. (3.161)

shows the form of the optimal control.
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Next, the effect of adding a constraint on false target attacks is examined.

With a constraint on P (m ≥ m̂), the states are

x (r) =

∫ r

0

2παρ [1 − PFTR (ρ)] dρ (3.164)

y (r) =

∫ r

0

PTR (ρ)
ρ

σ2
y

e
−

ρ2

2σ2
y dρ (3.165)

z (r) =

∫ r

0

2παρ [1 − PFTR (ρ)] [1 − y (ρ)] e−x(ρ)dρ. (3.166)

The corresponding L is still

L = −PTR (r)
r

σ2
y

e
−

r2

2σ2
y e−x(r). (3.167)

The derivatives of the states are

ẋ (r) = 2παr [1 − PFTR (r)] (3.168)

ẏ (r) = PTR (r)
r

σ2
y

e
−

r2

2σ2
y (3.169)

ż (r) = 2παr [1 − PFTR (r)] [1 − y (r)] e−x(r) (3.170)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H =
(
λy − e−x

)
PTR

r

σ2
y

e
−

r2

2σ2
y + 2παr

PTR

(1 − c)PTR + c

[
λx + λz (1 − y) e−x

]
(3.171)

and the costate differential equations become

λ̇x (r) = λz2παr
PTR (r)

(1 − c)PTR (r) + c
[1 − y (r)] e−x(r)

−PTR (r)
r

σ2
y

e
−

r2

2σ2
y e−x(r) (3.172)

λ̇y (r) = λz2παr
PTR (r)

(1 − c)PTR (r) + c
e−x(r) (3.173)

λ̇z (r) = 0 (3.174)
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Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
=
(
λy − e−x

) r

σ2
y

e
−

r2

2σ2
y +

[λx + λz (1 − y) e−x] 2παrc

[(1 − c)PTR + c]2
(3.175)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (r) =
c±

√

{λx(r)+λz [1−y(r)]e−x(r)}2παcσ2
ye

r2

2σ2
y

[e−x(r)
−λy(r)]

c− 1
. (3.176)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1].

While taking the derivative of Eq. (3.176) with respect to r is possible, there are too

many terms involved to discern any trends. Nonetheless, Eq. (3.176) shows the form

of the optimal control.

3.5.2 Sensor Craft Problem. The sensor craft problem does not condition

P (n ≥ n̂) on the number of previous attacks. For Scenario 7,

P (n = 1) =

∫ R

0

PTR (r)
r

σ2
y

e
−

r2

2σ2
y dr. (3.177)

Theorem 9 (Scenario 7 with k = ∞ and no constraint on P (m ≥ m̂)) If R and

α are constant, the optimal constrained solution is P ∗

TR = P ∗

TRmax
= 1.

Proof : With no constraint on P (m ≥ m̂), the optimal control is clearly P ∗

TR =

P ∗

TRmax
= 1.

�

This is not a practical solution, since all false targets would be declared targets and

attacked. With an infinite amount of warheads and no constraint on false target

attacks, there is no reason not to attack every object encountered.
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Next, the effect of adding a constraint on false target attacks is examined.

The sensor craft problem does not condition P (m ≥ m̂) on the number of previous

attacks.

Theorem 10 (Scenario 7 with k = ∞ and P (m ≥ 1) = b) If R and α are con-

stant, the unbounded P ∗

TR is monotonically decreasing.

Proof : With a constraint on P (m ≥ m̂), the states become

x (r) =

∫ r

0

2παρ [1 − PFTR (ρ)] dρ (3.178)

z (r) = 1 −
m̂−1∑

m=0

[x (r)]m

m!
e−x(r) (3.179)

The corresponding L is

L = −PTR (r)
r

σ2
y

e
−

r2

2σ2
y . (3.180)

The derivatives of the states are

ẋ (r) = 2παr [1 − PFTR (r)] (3.181)

ż (r) = 2παr [1 − PFTR (r)]

{

[x (r)](m̂−1)

(m̂− 1)!

}

e−x(r) (3.182)

After applying Eq. (2.12) for the ROC model, the Hamiltonian becomes

H = −PTR
r

σ2
y

e
−

r2

2σ2
y + 2παr

PTR

(1 − c)PTR + c

{

λx + λz

[
x(m̂−1)

(m̂− 1)!

]

e−x
}

(3.183)

and the costate differential equations become

λ̇x (r) = −
λz2παrPTR (r)

(1 − c)PTR (r) + c

[
(m̂− 1)

x (r)
− 1

]{

[x (r)](m̂−1)

(m̂− 1)!

}

e−x(r) (3.184)

λ̇z (r) = 0 (3.185)
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Taking the partial derivative of H with respect to the decision variable PTR gives

∂H

∂PTR
= −

r

σ2
y

e
−

r2

2σ2
y +

2παrc
{

λx + λz

[
x(m̂−1)

(m̂−1)!

]

e−x
}

[(1 − c)PTR + c]2
(3.186)

Solving ∂H
∂PTR

= 0, the optimal control is

P ∗

TR (r) =
c±

√

2παcσ2
y

{

λx (r) + λz

[
[x(r)](m̂−1)

(m̂−1)!

]

e−x(r)
}

e
r2

2σ2
y

c− 1
. (3.187)

Only the “minus” root is of interest, since the “plus” root puts PTR outside of [0, 1].

Taking the derivative of Eq. (3.187) with respect to r gives

Ṗ ∗

TR (r) =
−1

2 (c− 1)

√
√
√
√
√

2παcσ2
y

{

λx (r) + λz

[
[x(r)](m̂−1)

(m̂−1)!

]

e−x(r)
}

e
r2

2σ2
y

×

{

λ̇x (r) e
r2

2σ2
y + λzẋ (r)

[
(m̂− 1)

x (r)
− 1

]{

[x (r)](m̂−1)

(m̂− 1)!

}

e−x(r)e
r2

2σ2
y

+

[

λx (r) + λz

(

[x (r)](m̂−1)

(m̂− 1)!

)

e−x(r)

]

e
r2

2σ2
y
r

σ2
y

}

(3.188)

Using Eq. (3.181) for ẋ (r) with Eq. (2.12) for the ROC model and Eq. (3.184) for

λ̇x (r) yields

Ṗ ∗

TR (r) =
r

2σ2
y

[

P ∗

TR (r) −
c

c− 1

]

< 0. (3.189)

�

As radius increases, the amount of expected false target encounters in an annulus

increases, and the probability of encountering the target in an annulus decreases.

With infinite warheads, the focus becomes meeting the constraint on false target

attacks. Since the amount of expected false target encounters in an annulus increases

with radius, it makes intuitive sense to tighten the operating point on the ROC curve.

That is, decrease PTR as radius increases.
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IV. Applications

In this chapter, sample applications of the techniques and equations provided in this

dissertation are given. First, the simplest form of the problem where all variables

are fixed is examined. Second, the effects of varying PTR along a single ROC curve

over time is examined. Finally, varying both PTR and Q over time is examined.

Matlab’sr fmincon routine, which is a discrete-time, gradient-based solver is used.

Analytic conclusions from Chapter III are used to verify the numerical results.

Effectiveness measures are the probability of at least one target attack, P (n ≥ 1),

and the probability of at least one false target attack, P (m ≥ 1). The following con-

strained optimization problem is solved:

Max: P (n ≥ 1)

Subj to: P (m ≥ 1) ≤ b

Having n̂ = m̂ = 1 allows one to compare of the munition, UCAV, and sensor craft

problems. Thus, the sensitivity of effectiveness to the number of warheads can be

evaluated. By varying b, the sensitivity of effectiveness to the upper bound on false

target attacks can be evaluated. Finally, by examining a variety of battle space

scenarios, the effect of the target-to-false-target ratio being fixed or a function of

sensor footprint location can be evaluated.

4.1 Numerical Solution Method

The numerical solution method comes from Bryson’s gradient algorithm [7]. A

synopsis of the algorithm is now given. First the continuous state equations are put

into discrete form using Euler’s method. The problem is then put into Mayer form,

where the state vector is augmented by one state representing the cumulative sum

of L to step i. The problem statement then becomes:
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Min: φ [s (N)]

subj to: s (i+ 1) = f [s (i) ,u (i) , i], i = 0, . . . ,N − 1

s (0) = s0

ψ [s (N)] = 0

where N is the number of time or distance steps, as opposed to N , which is the

number of targets. ψ represents terminal constraints and is some function of the

terminal states. In this case, ψ [s (N)] = z (N) − b. Mayer form is equivalent to

Bolza form; however, Mayer form yields simpler expressions and is easier to code

for numerical solutions. Matlab’sr fmincon routine is used, so one does not have to

guess step size. The values for f , fs, fu, φs, and ψs at any time or distance step must

be provided in a subroutine. The algorithm then proceeds as follows:

• Guess u (i) for i = 0, . . . ,N − 1

• Forward propagate the state equations from s (0) using u (i) and store s (i)

• Evaluate φ and ψ and set λφ (N) = φT
s
, λψ (N) = ψT

s

• Backward propagate and store the response sequences Hφ
u

(i) and Hψ
u

(i)

λφ (i) = fT
s

(i)λφ (i+ 1) , i = N − 1, . . . , 0

λψ (i) = fT
s

(i)λψ (i+ 1)

[
Hφ

u
(i)
]T

= fT
u

(i)λφ (i+ 1)

[
Hψ

u
(i)
]T

= fT
u

(i)λψ (i+ 1)

The process is repeated until the terminal constraint error and the gradient sequence

are negligibly small. The problem becomes a parameter optimization involving nc×

N decision variables, where nc is the number of control variables. A method for

nondimensionalization was proposed in a handout by Pachter and is included in

Appendix C.
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4.2 Fixed Q, Fixed PTR

If all parameters are fixed, the results from Decker [15] or Jacques and Pachter [26]

can be used. To illustrate how the generalized equations derived in this dissertation

collapse to the results in [15] and [26], consider a Scenario 3 problem and the calcu-

lation of the first elemental probability P1. From Table 2.5,

P1 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)[∫ t

0

1

AB
PTR (τ)Q (τ) dτ

]n−1

×

[∫ t

0

1

AB
Q (τ) dτ −

∫ t

0

1

AB
PTR (τ)Q (τ) dτ

]j−(n−1)

×

[

1 −

∫ t

0

1

AB
Q (τ) dτ

]N−1−j
}

N

AB
PTR (t)Q (t) dt (4.1)

Assuming fixed parameters gives

P1 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)[

PTR
A

AB

]n−1 [

(1 − PTR)
A

AB

]j−(n−1)

×

[

1 −
A

AB

]N−1−j
}

N

AB
PTRQdt (4.2)

Decker showed encounters could be decoupled from classifications resulting in

P1 =
N−1∑

j=n−1

{(
N − 1

j

)[
A

AB

]j [

1 −
A

AB

]N−1−j

×

(
j

n− 1

)

[PTR]n−1 [(1 − PTR)]j−(n−1)

}
N

AB
PTRQdt (4.3)

He then applied a truncated binomial conversion giving

P1 =

(
N − 1

n− 1

)[

PTR
A

AB

]n−1 [

(1 − PTR)
A

AB

]N−n
N

AB
PTRQdt (4.4)
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Letting N = 1 and k = 1 gives

P1 =
1

AB
PTRQdt (4.5)

which matches the results derived by Jacques and Pachter [26].

A fixed-parameter problem has advantages. The operator simply sets PTR

at the beginning of the mission. No sophisticated scheduling software or hardware

is needed. Finding the optimal PTR can be done looking at a plot or table. For

example, in Scenario 1 with k = 1, the effectiveness measures become

P (n ≥ 1) = PTR

[
1 − e−(1−PFTR)αQT

]

(1 − PFTR)αAB
(4.6)

and

P (m ≥ 1) = 1 − PTR

[
1 − e−(1−PFTR)αQT

]

(1 − PFTR)αAB
−

(

1 −
PTRQT

AB

)

e−(1−PFTR)αQT . (4.7)

Equation (2.12) can be used for the ROC model with c = 100. Assume the munition

covers AB by time T . Thus, QT = AB. One of three mutually exclusive events

are possible. The munition either attacks a target, attacks a false target, or attacks

nothing and self destructs. Figure 4.1 shows the outcome probabilities versus PTR

when c = 100, αQ = 50 [1/hr], and T = 0.5 hr.

If the constraint on a false target attack is removed, Figure 4.1 shows the best

unconstrained solution is P ∗

TRu
= 0.723 with a corresponding P (n ≥ 1)∗ = 0.535

and P (m ≥ 1)∗ = 0.318. If P (m ≥ 1) is bounded by b = 0.2, the best constrained

solution is P ∗

TR = 0.563 with a corresponding P (n ≥ 1)∗ = 0.483. In Figure 4.1,

the outcome probability functions are smooth and well-behaved. The function for

P (n ≥ 1) has one peak. The function for P (m ≥ 1) is monotonically increasing,

so any constrained solution will be unique. Finally, the function for the probability

of no attack always starts at (0, 1), then monotonically decreases. Since the three
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Figure 4.1 Outcome probabilities versus probability of a target report. Scenario 1
with constant parameters, c = 100, αQ = 50 [1/hr], and T = 0.5 [hr].

outcome probabilities are mutually exclusive in a munition problem, they sum to

one for each PTR considered.
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The problem can be solved for a number of b values and a plot of P ∗

TR versus

b can be generated. If b ≥ 0.318, the unconstrained solution P ∗

TRu
= 0.723 is used.

Figure 4.2 illustrates the sensitivity of the solution to changes in b. Figure 4.2 is the

plot an operator needs to set PTR at the beginning of a mission, assuming b has been

determined by the commander.
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Figure 4.2 Optimal probability of a target report versus maximum allowable prob-
ability of a false target attack, b. Scenario 1 with constant parameters,
c = 100, αQ = 50 [1/hr], and T = 0.5 [hr].

Similar results are expected for Scenarios 2-4, where target-to-false-target ra-

tios are the same regardless of sensor footprint location. For Scenarios 5-7, target-to-

false-target ratios depend on the sensor footprint location. Therefore, the function for

P (m ≥ 1) is not always monotonically increasing. Hence solutions are not unique.

For example, Figure 4.3 shows the function for P (m ≥ 1) initially increases, then

decreases, then increases again for a Scenario 7 problem with k = 1. For values of

P (m ≥ 1) above the local minimum at P (m ≥ 1) = 0.385, the unconstrained solu-

tion is used. On a plot of P ∗

TR versus b, a discontinuous jump appears as shown in

Figure 4.4.
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Figure 4.3 Outcome probabilities versus probability of a target report. Scenario
7 with constant parameters, c = 100, α = 5 [1/km2], σ2 = 0.25 [km2],
and R = 5 [km].
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Figure 4.4 Optimal probability of a target report versus maximum allowable prob-
ability of a false target attack. Scenario 7 with constant parameters,
c = 100, α = 5 [1/km2], σ2 = 0.25 [km2], and R = 5 [km].
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4.3 Fixed Q, Variable PTR

Fixed-parameter problems are readily solvable and simple to employ opera-

tionally. Improvement when parameters are allowed to vary is now examined. To

begin, the case where PTR is allowed to vary while Q remains fixed is considered.

Having a fixed area coverage rate means a single ROC curve is used. Moving along

a single ROC curve is done by adjusting the sensor threshold, which is tantamount

to adjusting PTR.

Consider Scenario 1 with k = 1 and Eq. (2.12) for the ROC model with c = 100.

Assume the munition covers AB by time T . Thus, QT = AB. The optimal control

problem can be solved for a number of b values. Figure 4.5 shows optimal PTR

schedules for three constraint values. In Chapter III, the optimal PTR was shown to

increase over time when the constraint on false target attacks is removed. Figure 4.5

shows the optimal PTR increases over time even when a constraint on false target

attacks exists. The increases diminish as constraint values are tightened (lowered).
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Figure 4.5 Optimal probability of a target report versus time. Scenario 1 with
k = 1, c = 100, αQ = 50 [1/hr], and T = 0.5 [hr].
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The problem can be solved for a number of constraint values and the objective

function values can be compared to those obtained using fixed parameters. In the

system operating characteristic shown in Figure 4.6, there is negligible improvement

for constraint values below 0.15 and marginal improvement (up to 3.4 percent) for

constraint values above 0.15. Depending on the application, this improvement may

or may not be worth the added complexity.
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Figure 4.6 System Operating Characteristic. Dynamic versus constant PTR. Sce-
nario 1 with k = 1, c = 100, αQ = 50 [1/hr], and T = 0.5 [hr].

Up to now, only the munition and sensor craft problems have been considered.

It was shown in Chapter III that the optimal PTR increases over time for the Scenario

1 munition problem, when the constraint on false target attacks is removed. It was

also shown in Chapter III that the optimal PTR is constant when k = ∞ and, for

Scenario 1, is given by

P ∗

TR (t) =
−c ln [1 − b]

(1 − c) ln [1 − b] + αQT
. (4.8)
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Now consider the effect of multiple warheads. Figure 4.7 shows the system operating

characteristic for k = 1, 2, 6,∞ and m̂ = n̂ = 1. The results for k = ∞ come

analytically from Eq. (4.8). The k = 1 results do not exactly conform to other

k values which are bound by k = ∞. The munition problem has three mutually

exclusive outcomes; whereas, the outcomes for the k > 1 problems are not mutually

exclusive. Nonetheless, Figure 4.7 can be used by commanders to make decisions

about constraint values and number of warheads. For b < 0.20, there is not much

to be gained by adding warheads. In this single-target scenario, there are more false

targets present, which means the probability of the first attack being a false target

attack is relatively high. Thus it does not matter how many warheads there are. The

constraint is met by the first attack. For b < 0.20, one can simply use the constant

closed-form PTR given by Eq. (4.8). In Figure 4.7, it is clear the benefits of more than

6 warheads is negligible throughout most of the range of b. These types of insights

are possible using the techniques and equations provided in this dissertation.
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Figure 4.7 System Operating Characteristic. Dynamic PTR. Scenario 1 with
c = 100, αQ = 50 [1/hr], and T = 0.5 [hr].
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Consider Scenario 7 with k = 1 and Eq. (2.12) for the ROC model with c = 100.

The target-to-false-target ratio depends on the sensor footprint location. Figure 4.8

shows optimal PTR schedules for three constraint values. No conclusions were made

for the Scenario 7 munition problem in Chapter III. Figure 4.8 shows as b tightens

(decreases), the sensor is “turned off” earlier in the search.
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Figure 4.8 Optimal probability of a target report versus radius. Scenario 7 with
k = 1, c = 100, α = 5 [1/km2], σ2 = 0.25 [km2], and R = 5 [km].

The objective function values of the dynamic solutions can be compared to

those of the constant solutions. Figure 4.9 shows the poor performance of the

constant-PTR solution when b < 0.385. Unlike the Scenario 1 example where dynamic-

PTR solutions were only a few percent better than constant-PTR solutions, there are

substantial improvements when b < 0.385. Since the dynamic problem allows the

sensor to be “turned off” at some point, solutions are similar to those at smaller R

values. How far out in radius to search is clear. The dynamic problem “recognizes”

the benefit of staying close to the origin when a target is normally distributed. The

fixed-parameter problem requires an arbitrary pick for R. Thus, performance is poor
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when R is chosen too large. To improve performance, one would need to make R a

parameter and run a sensitivity study.
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Figure 4.9 System Operating Characteristic. Dynamic versus constant PTR. Sce-
nario 7 with k = 1, c = 100, α = 5 [1/km2], σ2 = 0.25 [km2], and R = 5
[km].

The dynamic-PTR solutions have been compared to fixed-PTR solutions. The

amount of improvement varies based on problem parameters and whether the target-

to-false-target ratio is constant throughout the search. Next the requirement of fixed

area coverage rate is relaxed.
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4.4 Variable Q, Variable PTR

Allowing Q to vary while keeping T fixed introduces another trade space. For

a given b, larger Q means more area is covered in time T resulting in more target

encounters. However, there is less chance of correctly classifying the targets. Con-

versely, for a given b, smaller Q means less area is covered in time T resulting in less

target encounters. However, there is more chance of correctly classifying the targets.

In Section 2.3, a way was presented to model sensor performance by making the

ROC parameter c a function of area coverage rate Q. Specifically,

c (Q) =
Qn

Q
(4.9)

where Qn is a scaled nominal area coverage rate.

Allowing both Q and PTR to vary means the trajectory on the PTR versus

(1 − PFTR) plane is bound by a region instead of a single ROC curve. The region is

formed by a Qmin ROC curve and a Qmax ROC curve. Qmin might be tied to an air

vehicle’s stall speed, which is available in the air vehicle performance specification.

Qmax might be tied to an air vehicle’s maximum speed, gimbal limits, or search area.

Assuming the real Qmax would result in As > AB, an artificial limit needs to be

invoked. Otherwise, probabilities could be greater than one. To ensure As ≤ AB,

one can define Qmax as

Qmax ≡
AB

T
. (4.10)

In Chapter III it was shown that when Q is unbounded,

P ∗

TR (t) =
Qn

2Qn −Q∗ (t)
(4.11)

regardless of α, b, or number of warheads. Further, for Q∗ ∈ (0, Qn), P
∗

TR ∈
(

1
2
, 1
)
.

In other words,

P ∗

TR (t) > 0.5 (4.12)
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For Qn >> Q∗, P ∗

TR ≈ 0.5 for all time. If Q is at its lower or upper bound for

a particular region, then it can be considered fixed in that region. Therefore, one

expects to see fixed-Q trends in regions where Q is at a bound.

To illustrate what is going on in the dynamic-Q, dynamic-PTR problem, one

can plot the trajectory of the operating point on the ROC plot for Scenario 1 with

k = 1, α = 2, T = 0.5, Qn = 1000, Qmin = 10, and Qmax = 20. Figure 4.10 shows

four trajectories for different values of b on one plot. Figure 4.11 shows the four

trajectories on 4 different plots. When the constraint on false target attacks is tight

(low), the air vehicle must fly at Qmin to get the best sensor performance, and P ∗

TR

increases with time. When b = 0.09, the air vehicle starts at Qmin, but eventually

gets off the bound. As predicted, this occurs at a PTR value slightly above 0.50.

When b = 0.15, the air vehicle flies the entire mission with Q unbounded and the

corresponding P ∗

TR ≈ 0.5. When b = 0.25, the air vehicle starts with an unbounded

Q, but then hits the upper bound.
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Figure 4.10 ROC plot. Scenario 1 with dynamic-Q, dynamic-PTR, k = 1, α = 2
[1/km2], Qn = 1000, Qmin = 10, Qmax = 20, and T = 0.5 [hr].
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Figure 4.11 ROC plot broken out by upper bound. Scenario 1 with dynamic-
Q, dynamic-PTR, k = 1, α = 2 [1/km2], Qn = 1000, Qmin = 10,
Qmax = 20, and T = 0.5 [hr].

Time is implicit to the trajectories in Figures 4.10 and 4.11. If a trajectory is

along the Qmin or Qmax ROC curve, time increases as the trajectory moves up and

to the right. If a trajectory is in a region where Q is unbounded, time increases as

the trajectory moves to the right.
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Optimal schedules of the design variablesQ and PTR are shown in Figures 4.12(a)

and 4.12(b). When Q∗ is at either of its bounds, P ∗

TR behaves similarly to the fixed-Q

results shown previously. That is, P ∗

TR is monotonically increasing with flatter curves

at tighter constraint levels. When Q∗ is unbounded, P ∗

TR ≈ 0.5 as predicted and Q∗

is increasing. This represents the strategy seen before of staring conservatively, then

increasing aggressiveness with time.
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Figure 4.12 Optimal Schedules for the Design Variables. Scenario 1 with dynamic-
Q, dynamic-PTR, k = 1, α = 2 [1/km2], Qn = 1000, Qmin = 10,
Qmax = 20, and T = 0.5 [hr].
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A better indication of what is going on comes from looking at the schedule for

(1 − PFTR). Figure 4.13 shows (1 − PFTR) is always smooth and increasing. These

are the optimal functions required for meeting the constraint on false target attacks.

Q and PTR must combine at each time such that (1 − PFTR) falls on one of the

functions in Figure 4.13.
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Figure 4.13 Optimal (1 − PFTR) schedule. Scenario 1 with dynamic-Q, dynamic-
PTR, k = 1, α = 2 [1/km2], Qn = 1000, Qmin = 10, Qmax = 20, and
T = 0.5 [hr].
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The tradeoff situation where lower Q values provide better sensor performance

at the expense of less area searched was mentioned earlier. All this depends on b.

Figure 4.14 shows the transition from the minimum search area to the maximum

search area.
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Figure 4.14 Area searched versus constraint on false target attacks. Scenario 1
with dynamic-Q, dynamic-PTR, k = 1, α = 2 [1/km2], Qn = 1000,
Qmin = 10, Qmax = 20, and T = 0.5 [hr].
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As with previous results, it is beneficial to compare the dynamic-parameter

results to fixed-parameter results. This can be done two ways. First, one can require

a fixed-parameter solution at each b value, whereby each parameter is optimized at

each b value. Second, one can fix one of the parameters and allow only the other

parameter to be optimized at each b value. Figure 4.15 compares dynamic and

fixed solutions when each parameter is optimized at each b value. Only marginal

improvement is seen for the dynamic-parameter problem.
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Figure 4.15 System Operating Characteristic. Dynamic versus constant solutions.
Scenario 1 with k = 1, α = 2 [1/km2], Qn = 1000, Qmin = 10,
Qmax = 20, and T = 0.5 [hr]. Fixed-parameter problem had both Q

and PTR optimized at each b
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In Figure 4.16, operating points for different b values are plotted on a ROC

plot when both Q and PTR are fixed but optimized at each b value. The operating

points were determined using Eq. (4.6) and Eq. (4.7) with

(1 − PFTR) =
QPTR

QPTR +Qn (1 − PTR)
. (4.13)

A grid search was used at each b value to find the optimal fixed operating point,

whereby Q and PTR were both varied from their minimum to maximum values.

The upper bound b was incremented by 0.01 to 0.40. The trajectory is similar to

the dynamic-Q, dynamic-PTR trajectory in Figure 4.11. For low values of b, the

air vehicle flies at Qmin. For high values of b, the air vehicle flies at Qmax. A

“bridge” occurs somewhere above PTR = 0.5. Though not dynamic, this behavior of

P ∗

TR ≈ 0.5 when Q∗ is unbounded matches the dynamic analytical predictions. This

kind of insight can help designers and mission planners.
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Figure 4.16 ROC plot. Scenario 1 with k = 1, α = 2 [1/km2], Qn = 1000,
Qmin = 10, Qmax = 20, and T = 0.5 [hr]. Fixed-parameter problem
had both Q and PTR optimized at each b
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Next consider the case when one of the two design variables is fixed for all

b values. Figure 4.17 shows when Q = 15 for all b values, the improvements for

the dynamic-parameter problem are more pronounced. Hence, there are benefits

to allowing both Q and PTR to be optimized at each b value, even when they are

required to be fixed.
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Figure 4.17 System Operating Characteristic. Dynamic versus constant solutions.
Scenario 1 with k = 1, α = 2 [1/km2], Qn = 1000, Qmin = 10,
Qmax = 20, and T = 0.5 [hr]. Fixed-parameter problem had Q = 15
[km2/hr] and PTR optimized at each b
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The effects of additional warheads remains to be examined. All the example

problems thus far have been either Scenario 1 or Scenario 7. Therefore an example

using Scenario 2 is in order, since analysis of Scenario 2 was also done in Chapter III.

Consider Scenario 2 with α = 1 [1/km2], β = 0.1 [1/km2], Qn = 1000 [km2/hr],

Qmin = 10 [km2/hr], Qmax = 20 [km2/hr] and T = 0.5 [hr]. Analysis showed if

k = ∞, m̂ = 1, and P (m ≥ 1) = b with T , Q, and α constant, then

P ∗

TR (t) =
−Qn ln (1 − b)

(Q−Qn) ln (1 − b) + αQ2T
(4.14)

assuming c = Qn

Q
.
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Equation (4.14) can be used to gain a rough idea of when it is better to fly at

Qmin and when it is better to fly at Qmax. Figure 4.18 shows a crossover in the trade

space around b = 0.10. At tight constraints on false target attacks, the system must

be on the best ROC curve and uses Qmin. As the constraint loosens, the system can

transition to a worse ROC curve with the idea of encountering more targets by using

a larger Q. While Figure 4.18 applies to k = ∞ and fixed Q, the dynamic problem

should approach the k = ∞, Q = Qmax at high values of b.
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Figure 4.18 System Operating Characteristic. Scenario 2 with Q fixed at either
Qmin or Qmax, Qn = 1000, k = ∞, α = 1 [1/km2], β = 0.1 [1/km2],
and T = 0.5 [hr].
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Figure 4.19 shows the trade space for the dynamic-Q, dynamic-PTR problem

for k = 1, 2, 4, 6. As seen before, increasing warheads for a tight constraint on false

target attacks provides no value. As the constraint loosens, increasing warheads

eventually adds value. For this problem, there is minimal benefit to adding more

than 4 warheads. For the most part, the 4-warhead solution follows the asymptote

generated by the k = ∞, Q = Qmax solution from Eq. (4.14).
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Figure 4.19 System Operating Characteristic. Scenario 2 with dynamic-Q,
dynamic-PTR, α = 1 [1/km2], β = 0.1 [1/km2], and T = 0.5 [hr].
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One can look to trajectories on a ROC plot to gain further insight. Figure 4.20

shows 4 trajectories for 4 different b values when k = 1. When the constraint on

false target attacks is tight (low), the air vehicle must fly at Qmin to get the best

sensor performance, and P ∗

TR increases with time. When b = 0.05, the air vehicle

starts at Qmin, but quickly gets off the bound. As predicted in Chapter III, this

occurs at a PTR value slightly above 0.50. When b = 0.10, the air vehicle flies the

entire mission with Q unbounded and the corresponding P ∗

TR ≈ 0.5. When b = 0.15,

the air vehicle starts with an unbounded Q, but then hits the upper bound. It is

interesting to note that the crossover from Qmin to Qmax occurred around the same b

value as the k = ∞, fixed-Q results in Figure 4.18. While PTR varies in Figure 4.20,

the variation is small.
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Figure 4.20 ROC plot. Scenario 2 with dynamic-Q, dynamic-PTR, α = 1 [1/km2],
β = 0.1 [1/km2], T = 0.5 [hr], and k = 1.
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Figure 4.21 shows 4 trajectories for 4 different b values when k = 2. The

variations in PTR are even smaller. In addition, at each b, the magnitudes of PTR

and Q are smaller than the k = 1 results. This makes intuitive sense as increasing

warheads requires a more conservative operating point to meet the constraint on false

target attacks. In fact, for the given problem, adding warheads actually degraded

performance for tight constraints, albeit by very small amounts not readily visible

in Figure 4.19.
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Figure 4.21 ROC plot. Scenario 2 with dynamic-Q, dynamic-PTR, α = 1 [1/km2],
β = 0.1 [1/km2], T = 0.5 [hr], and k = 2.
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V. Conclusions and Recommendations

5.1 Summary

The purpose of this research was to analytically quantify operational effective-

ness of airborne systems performing search and destroy missions. The primary con-

tribution to the field is the ability to handle time-varying parameters, which broadens

the possible battle space scenarios and enables improved performance through func-

tion optimization. Prior to this research, one could only analytically solve problems

where area coverage rate, sensor threshold, target density, and false target density

where fixed. Now one can analytically solve problems where any or all of the above

parameters vary with time.

Two types of search patterns were considered. The first type was the linear

search pattern, which can be used to cover any linear-symmetric battle space. The

second type involved concentric annuli emanating from the origin, which can be used

to cover any circular battle space. Uniform, Poisson, and normal probability distrib-

utions were used to model target and false target encounters. Expressions needed to

calculate the probability of at least n̂ target attacks, P (n ≥ n̂), and the probability

of at least m̂ false target attacks, P (m ≥ m̂), were derived for the following seven

battle space scenarios:

Scenario 1 consisted of a single target uniformly distributed in a linear-

symmetric battle space among a Poisson field of false targets.

Scenario 2 consisted of a linear-symmetric battle space with a Poisson field

of targets and a Poisson field of false targets.

Scenario 3 consisted of N targets uniformly distributed in a linear-symmetric

battle space among a Poisson field of false targets.

Scenario 4 consisted of N targets and M false targets uniformly distributed

in a linear-symmetric battle space.

5-1



Scenario 5 consisted of N targets normally distributed in a circular battle

space among a Poisson field of false targets. Normally distributed referred to a

circular-normal distribution centered at the origin with a target standard deviation

σz.

Scenario 6 consisted of N targets and M false targets normally distributed in

a circular battle space. Normally distributed referred to circular-normal distributions

centered at the origin with a target standard deviation σz and a false target standard

deviation σy.

Scenario 7 consisted of a single target normally distributed in a circular battle

space among a Poisson field of false targets.

Sensor performance, in terms of a system’s ability to autonomously distinguish

between targets and false targets, came from a Receiver Operating Characteristic

(ROC) curve. A representative ROC curve model was used; whereby, a parameter c

dictated the locus of operating points. The parameter c depended inversely on the

area coverage rate Q. Based on a user-supplied constant Qn, sensor performance was

completely determined by Q and the probability of a target report PTR. Together,

Q and PTR establish the system operating characteristic.

Optimal control problems were formulated to maximize P (n ≥ n̂) subject to

P (m ≥ m̂) ≤ b, where b was set by the user. The decision variables were Q and

PTR. Due to coupling of the state and costate equations, the two point boundary

value problems were solved numerically using Bryson’s gradient algorithm [7] and

Matlab’sr fmincon routine.

Prior to numerically solving sample problems, analytic solutions were provided

for the munition and sensor craft problems for Scenarios 1, 2, and 7. Using these

tractable instances, the following conclusions were made and used to verify numerical

results:
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1. For Scenarios 1 and 2 with k = 1 and no constraint on P (m ≥ m̂), if T , Q,

α, and β are constant, the unbounded P ∗

TR is monotonically increasing with time.

2. For Scenarios 1, 2, and 7 with k = ∞, n̂ = 1, and no constraint on

P (m ≥ m̂), if T (or R), Q, α, and β are constant, the bounded P ∗

TR = P ∗

TRmax
= 1.

3. For Scenarios 1 and 2 with k = ∞ and P (m ≥ m̂) = b, if T , Q, α, and β

are constant, then P ∗

TR is constant for all time.

4. For Scenarios 1 and 2 with k = 1 or k = ∞, if T , α, and β are constant and

Q (t) is unbounded, then the unbounded P ∗

TR is given by

P ∗

TR (t) =
Qn

2Qn −Q∗ (t)
(5.1)

5. For Scenario 7 with k = ∞ and P (m ≥ m̂) = b, if R and α are constant,

then P ∗

TR is monotonically decreasing with radius.

Variants of the problem were solved where some or all of the parameters were

assumed fixed. Some problem-specific trends were noticed. Dynamic solutions were

compared to constant solutions. The effects of additional warheads was also exam-

ined. The ratio of targets to false targets impacted results as well as whether the

ratio depended on sensor footprint location.

5.2 Applicability

The results of this dissertation apply to search vehicles with 0, 1, or k warheads.

Although the real motivation for this research came from autonomous air operations,

the results can be applied to manned systems, land-based systems, and water-based

systems. They can be applied in the design phase or operational phase of a system.

In the design phase, the results can be used to develop system requirements, compare

competing designs, or verify simulation results. Parameter sensitivity studies can be

done to determine the cost effectiveness of improving sensors, warheads, or vehicle

performance. The mathematical framework enables sound systems engineering. In
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the operational phase, tactical decisions in the form of setting operating points and

determining the number of warheads are possible using the results of this disser-

tation. The system operating characteristic plots of P (n ≥ n̂) versus P (m ≥ m̂)

that include warhead effects give mission planners a complete picture of the trade

space. They can look at one figure and see the effects of changing constraint level

or changing number of warheads.

5.3 Recommendations for Further Research

1. Run more sample problems. Investigate different target and false target

densities. Investigate different battle spaces.

2. Change from an airborne-based mission to a land-based or sea-based mission.

Investigate any problem-specific trends.

3. Take an existing computer simulation and perform Monte Carlo runs. Com-

pare the results with the analytic results possible from this research.

4. Develop a Matlabr toolbox with a graphical user interface that allows the

user to select the scenario, the parameters allowed to vary, the number of time steps,

solution tolerance, etc.

5. Examine more sophisticated ROC curve models. Include both altitude and

velocity effects.

6. Develop expressions for combinations of uniform, Poisson, and normal dis-

tributions not covered by Scenarios 1-7.

7. Derive expressions to handle multiple types of targets or false targets.

8. Examine a bivariate normal distribution other than circular normal.

9. Develop scenarios for a linear-symmetric battle space where the ratio of

targets to false targets depends on sensor footprint location.
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10. Derive expressions for Scenarios 5-7 assuming the search starts at the outer

radius and progresses inward.

11. Examine multiple warhead types.
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Appendix A. Probability of Exactly j Classified Encounters

Occurring up through a Specified Time or Radius

The probability of exactly j classified encounters occurring up through a specified

time t or radius r is of interest. A classification occurs every time an object is

encountered. Poisson, uniform, and circular normal distributions are considered.

The following symbology is used:

A ≡ area covered up through time t or radius r

E ≡ events involving encounters

C ≡ events involving classified encounters

T ≡ events involving target attacks

F ≡ events involving false target attacks

X ≡ random variable

Pc ≡ general classification probability

Pc can be PTR, PFTR, (1 − PTR), or (1 − PFTR) depending on the application. If only

encounters are needed, Pc = 1. For each distribution, solutions are derived assuming

only one classification probability is used for all j encounters. Special cases include

the probability of no target attacks and the probability of no false target attacks. For

the distributions having a finite number of objects (uniform and circular normal),

solutions are also derived assuming l of the j encounters are classified with one

probability and the other j − l encounters are classified with a second probability.

A.1 Poisson Distribution

Let X be a random variable on the sample space S= {0, 1, 2, . . .}. If the

probability function of X is

P ({X = η}) = e−ν
νη

η!
, η = 0, 1, 2, . . . (A.1)
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where ν > 0, then X is said to obey the Poisson probability law with parameter

ν [39]. Equation (A.1) gives the probability of encountering exactly η objects while

searching a Poisson field of objects. The Poisson field of objects is characterized

by a density distribution α (or β) so that when an area A is searched, the Poisson

probability law parameter is ν = αA. This is tantamount to assuming:

1) The probability that exactly one object will be encountered in the incremen-

tal area ∆A is approximately α∆A, in the sense that it is equal to α∆A+R1 (∆A),

and R1(∆A)
∆A

→ 0 as ∆A→ 0.

2) The probability that exactly zero objects will be encountered in the in-

cremental area ∆A is approximately 1 − α∆A, in the sense that it is equal to

1 − α∆A+R2 (∆A), and R2(∆A)
∆A

→ 0 as ∆A→ 0.

3) The probability that exactly two or more objects will be encountered in the

incremental area ∆A is equal to R3 (∆A), such that the quotient R3(∆A)
∆A

→ 0 as

∆A→ 0.

4) If an area is subdivided into n subareas and for i = 1, . . . , n, Ei denotes the

event that at least one or more encounters occurred in the ith subarea, then, for any

integer n, E1, . . . , En are independent events.

Poisson parameters are often broken down into the product of an encounter

rate µ and time t. If an air vehicle has an area coverage rate Q, then µ = αQ. How

to handle an encounter rate that varies with time is now addressed.

Let µ (τ) be the rate of encounters at time τ . Divide the time interval [0, t]

into n short time periods of length τ1, . . . , τn such that

n∑

i=1

τi = t (A.2)

Let the mean rate of occurrence and mean probability of classification in the ith in-

terval be µi and Pci respectively. From the fourth assumption above, the probability
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that exactly ji encounters occur in the interval τi, i = 1, . . . , n is

P (j1, . . . , jn) =
n∏

i=1

e−µiτi
(µiτi)

ji

ji!

= e−
Pn

i=1 µiτi

n∏

i=1

(µiτi)
ji

ji!
(A.3)

The probability of no encounters occurring (and hence no classification) during [0, t]

is

P (E0,A) = e−
Pn

i=1 µiτi (A.4)

The probability of one classified encounter in the ith interval is

P (C1,∆Ai
) = e−

Pn
i=1 µiτi

(µiτi)
1

1!
Pci . (A.5)

The probability of exactly one classified encounter occurring during [0, t] requires

considering all the permutations where one classified encounter could occur. That is

P (C1,A) = P (C1,∆A1) + P (C1,∆A2) + · · · + P (C1,∆An
) (A.6)

So,

P (C1,A) = e−
Pn

i=1 µiτi
(µ1τ1)

1

1!
Pc1 + e−

Pn
i=1 µiτi

(µ2τ2)
1

1!
Pc2 +

· · · + e−
Pn

i=1 µiτi
(µnτn)

1

1!
Pcn

= e−
Pn

i=1 µiτi

n∑

i=1

µiτiPci (A.7)

The probability of exactly two classified encounters occurring during [0, t] requires

considering all the permutations where two classified encounters could occur. That
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is

P (C2,A) = P (C1,∆A1 ∩ C1,∆A2) + P (C1,∆A1 ∩ C1,∆A3) + · · · + P (C1,∆A1 ∩ C1,∆An
) +

P (C1,∆A2 ∩ C1,∆A3) + P (C1,∆A2 ∩ C1,∆A4) + · · · + P (C1,∆A2 ∩ C1,∆An
) +

...

+P
(
C1,∆An−1 ∩ C1,∆An

)
+

P (C2,∆A1) + P (C2,∆A2) + · · · + P (C2,∆An
) (A.8)

So,

P (C2,A) = e−
Pn

i=1 µiτi
(µ1τ1)

1

1!
Pc1

[

(µ2τ2)
1

1!
Pc2 + · · · +

(µnτn)
1

1!
Pcn

]

+

e−
Pn

i=1 µiτi
(µ2τ2)

1

1!
Pc2

[

(µ3τ3)
1

1!
Pc3 + · · · +

(µnτn)
1

1!
Pcn

]

+

...

e−
Pn

i=1 µiτi
(µn−1τn−1)

1

1!
Pcn−1

(µnτn)
1

1!
Pcn +

e−
Pn

i=1 µiτi

[

(µ1τ1)
2

2!
P 2
c1

+ · · · +
(µnτn)

2

2!
P 2
cn

]

=
1

2
e−

Pn
i=1 µiτi [2µ1τ1Pc1 (µ2τ2Pc2 + · · · + µnτnPcn) +

2µ2τ2Pc2 (µ3τ3Pc3 + · · · + µnτnPcn) +

· · · + 2µn−1τn−1Pcn−1µnτnPcn+

(µ1τ1Pc1)
2 + (µ2τ2Pc2)

2 + · · · + (µnτnPcn)2]

= e−
Pn

i=1 µiτi
(
∑n

i=1 µiτiPci)
2

2
(A.9)

In general, the probability of exactly j classified encounters occurring during [0, t] is

P (Cj,A) = e−
Pn

i=1 µiτi
(
∑n

i=1 µiτiPci)
j

j!
(A.10)
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Taking the limit as τi → 0, i = 1, . . . , n, n→ ∞ such that
∑n

i=1 τi = t yields

P (Cj,A) = e−
R t

0 µ(τ)dτ

(∫ t

0
Pc (τ)µ (τ) dτ

)j

j!
(A.11)

Equation (A.11) can be used to determine the probability of either no false target

attacks or no target attacks occurring up through time t. In the case of no false

target attacks, the possible mutually exclusive events are

no encounters

1 encounter correctly classified

2 encounters correctly classified
...

∞ encounters correctly classified

Thus,

P (E0,A ∩ C1,A ∩ . . . ∩ C∞,A) = P (E0,A) + P (C1,A) + · · · + P (C∞,A)

= e−
R t

0 µ(τ)dτ + e−
R t

0 µ(τ)dτ

(∫ t

0
Pc (τ)µ (τ) dτ

)1

1!
+

· · · + e−
R t

0 µ(τ)dτ

(∫ t

0
Pc (τ)µ (τ) dτ

)
∞

∞!

= e−
R t

0 µ(τ)dτ




1 +

(∫ t

0
Pc (τ)µ (τ) dτ

)1

1!
+

· · · +

(∫ t

0
Pc (τ)µ (τ) dτ

)
∞

∞!





= e−
R t

0 µ(τ)dτe
R t

0 Pc(τ)µ(τ)dτ

= e−
R t

0 [1−Pc(τ)]µ(τ)dτ (A.12)
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To calculate the probability of no false target attacks for a straight-line search,

Pc (τ) = PFTR (τ) and µ (τ) = α (τ)Q (τ) in Eq. (A.12) giving

P
(
F0,A(t)

)
= e−

R t

0 [1−PFTR(τ)]α(τ)Q(τ)dτ (A.13)

where α (τ) is the false target density. The Poisson parameter for false target attacks

(which is time-varying) becomes

νFT (t) ≡

∫ t

0

[1 − PFTR (τ)]α (τ)Q (τ) dτ (A.14)

To calculate the probability of no target attacks for a straight-line search, Pc (τ) =

1 − PTR (τ) and µ (τ) = β (τ)Q (τ) in Eq. (A.12) giving

P
(
T0,A(t)

)
= e−

R t

0 [PTR(τ)]β(τ)Q(τ)dτ (A.15)

where β (τ) is the target density. The Poisson parameter for target attacks (which

is time-varying) becomes

νT (t) ≡

∫ t

0

[PTR (τ)] β (τ)Q (τ) dτ (A.16)

Now that Poisson parameters for false target and target attacks exist, more general

expressions can be given. The probability of exactly m false target attacks in A (t)

is

P
(
Fm,A(t)

)
= e−νFT (t)νFT (t)m

m!
(A.17)

and the probability of exactly n target attacks in A (t) is

P
(
Tn,A(t)

)
= e−νT (t)νT (t)n

n!
. (A.18)

For a straight-line search,

A (t) =

∫ t

0

Q (τ) dτ. (A.19)
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In the case of searching a circular disc of radius R using concentric annuli emanating

from the origin, it can be shown that

νFT (r) ≡

∫ r

0

2π [1 − PFTR (ρ)]α (ρ) ρdρ (A.20)

and

νT (r) ≡

∫ r

0

2πPTR (ρ) β (ρ) ρdρ (A.21)

The probability of exactly m false target attacks in A (r) is

P
(
Fm,A(r)

)
= e−νFT (r)νFT (r)m

m!
(A.22)

and the probability of exactly n target attacks in A (r) is

P
(
Tn,A(r)

)
= e−νT (r)νT (r)n

n!
. (A.23)

For a circular search using concentric annuli emanating from the origin,

A (r) = πr2. (A.24)

A.2 Uniform Distribution

There are N uniformly-distributed objects in the battle space AB. Divide the

time period of length t into n short time periods of length τ1, . . . , τn such that

n∑

i=1

τi = t (A.25)

Let the mean probability of classification and area coverage rate in the ith interval

be Pci and Qi respectively. The incremental area is given by

∆Ai = Qiτi (A.26)
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and the search area is given

As =
n∑

i

∆Ai. (A.27)

No encounters during [0, t] means the first object was not encountered, the second

object was not encountered, ..., the N th object was not encountered. These events

are independent, thus the probability of no encounters (and hence no classification)

involves multiplying the individual probabilities.

P (E0,A) =

[

1 −
1

AB

∫ t

0

Q (τ) dτ

]N

(A.28)

Let j = 1. In the ith interval, either the first object or the second object or ... or

the N th object is encountered. These are mutually exclusive events. Therefore, to

calculate the probability of one classified encounter in the ith interval, the individual

probabilities are summed. That is,

P (C1,∆Ai
) =

Pci∆Ai
AB

+ · · · +
Pci∆Ai
AB

︸ ︷︷ ︸

N

= N
Pci∆Ai
AB

(A.29)

The probability of exactly one classified encounter occurring during [0, t] requires

considering all the permutations where one classified encounter could occur. That is

P (C1,A) = P (C1,∆A1) + P (C1,∆A2) + · · · + P (C1,∆An
) (A.30)

So

P (C1,A) = N
Pc1∆A1

AB
+N

Pc2∆A2

AB
+ · · · +N

Pcn∆An
AB

=
N

AB

n∑

i

Pci∆Ai (A.31)

The probability of exactly two classified encounters occurring during [0, t] requires

considering all the permutations where two classified encounters could occur. That
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is

P (C2,A) = P (C1,∆A1 ∩ C1,∆A2) + P (C1,∆A1 ∩ C1,∆A3) + · · · + P (C1,∆A1 ∩ C1,∆An
) +

P (C1,∆A2 ∩ C1,∆A3) + P (C1,∆A2 ∩ C1,∆A4) + · · · + P (C1,∆A2 ∩ C1,∆An
) +

...

+P
(
C1,∆An−1 ∩ C1,∆An

)
+

P (C2,∆A1) + P (C2,∆A2) + · · · + P (C2,∆An
) (A.32)

Bayes’ rule can be applied to the joint probabilities P (C1,∆Ai
∩ C1,∆Ak

). That is,

P (C1,∆Ai
∩ C1,∆Ak

) = P (C1,∆Ai
|C1,∆Ak

)P (C1,∆Ak
) (A.33)

So,

P (C2,A) = (N − 1)
Pc2∆A2

AB
N
Pc1∆A1

AB
+ (N − 1)

Pc3∆A3

AB
N
Pc1∆A1

AB
+ · · · +

(N − 1)
Pcn∆An
AB

N
Pc1∆A1

AB
+

(N − 1)
Pc3∆A3

AB
N
Pc2∆A2

AB
+ (N − 1)

Pc4∆A4

AB
N
Pc2∆A2

AB
+ · · · +

(N − 1)
Pcn∆An
AB

N
Pc2∆A2

AB
+

...

(N − 1)
Pcn∆An
AB

N
Pcn−1∆An−1

AB
+

(
N

2

)
1

A2
B

n∑

i=1

(Pci∆Ai)
2

=

(
N

2

)
1

A2
B

n∑

i=1

n∑

k=1

Pci∆AiPck∆Ak =

(
N

2

)[

1

AB

n∑

i=1

Pci∆Ai

]2

(A.34)
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The last step involved using Fubini’s Theorem. In general, the probability of exactly

j classified encounters occurring during [0, t] is

P (Cj,A) =

(
N

j

)[

1

AB

n∑

i=1

Pci∆Ai

]j

. (A.35)

Taking the limit as τi → 0, i = 1, . . . , n, n→ ∞ such that
∑n

i=1 τi = t yields

P (Cj,A) =

(
N

j

)[
1

AB

∫ t

0

Pc (τ)Q (τ) dτ

]j

(A.36)

Equation (A.36) can be used with Pc (τ) = 1−PTR (τ) to determine the probability

of no target attacks occurring up through time t. The possible mutually exclusive

events are

no target encounters

1 misclassified target encounter and N − 1 targets not encountered

2 misclassified target encounters and N − 2 targets not encountered
...

N misclassified target encounters

Bayes’ rule can be applied to calculate the joint probabilities. That is,

P (j misclassified encounters ∩N − j objects not encountered) =

P (j misclassified encounters|N − j objects not encountered)×

P (N − j objects not encountered) (A.37)
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Therefore, the probability of no target attacks occurring up through time t, assuming

N targets, is

P (T0,A) =

[

1 −
1

AB

∫ t

0

Q (τ) dτ

]N

+

N∑

j=1

{(
N

j

)[
1

AB

∫ t

0

[1 − PTR (τ)]Q (τ) dτ

]j

×

[

1 −
1

AB

∫ t

0

Q (τ) dτ

]N−j
}

=
N∑

j=0

{(
N

j

)[
1

AB

∫ t

0

[1 − PTR (τ)]Q (τ) dτ

]j

×

[

1 −
1

AB

∫ t

0

Q (τ) dτ

]N−j
}

=

[

1 −
1

AB

∫ t

0

PTR (τ)Q (τ) dτ

]N

(A.38)

The last step involved using the binomial theorem.

Similarly, the probability of no false target attacks occurring up through time

t, assuming M false targets is

P (F0,A) =

{

1 −
1

AB

∫ t

0

[1 − PFTR (τ)]Q (τ) dτ

}M

. (A.39)

Equation (A.36) assumes the same classification probability is used for each

encounter. If j objects are encountered, suppose l are classified with Pc1 (τ) and j− l

are classified with Pc2 (τ). Thus,

P [l classified with Pc1 (τ) ∩ j − l classified with Pc2 (τ)|j encounters] =
(
j

l

)[
1

AB

∫ t

0

Pc1 (τ)Q (τ) dτ

]l [
1

AB

∫ t

0

Pc2 (τ)Q (τ) dτ

]j−l

(A.40)
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A.3 Circular-Normal Distribution

There are N normally-distributed objects. Normally-distributed refers to a

circular normal distribution with standard deviation σ. Thus, the search area As is

a circular disc. Divide the disc into n concentric annuli of area A1, . . . , An such that

n∑

i=1

Ai = As (A.41)

Each Ai is calculated using

Ai = 2πρi∆ρi (A.42)

where ρi is the radius of the annulus and ∆ρi is the thickness. The search begins at

the origin of the disc and progresses outward such that ρi < ρi+1, i = 1, . . . , n − 1.

Let the mean probability of classification in the ith annulus be Pci .

No encounters during [0, r] means the first object was not encountered, the

second object was not encountered, ..., the N th object was not encountered. These

events are independent, thus the probability of no encounters (and hence no classi-

fication) involves multiplying the individual probabilities.

P (E0,A) =

[

1 −

∫ 2π

0

∫ r

0

1

2πσ2
e−

ρ2

2σ2 ρdρdθ

]N

=

[

1 −

∫ r

0

ρ

σ2
e−

ρ2

2σ2 dρ

]N

. (A.43)

Let j = 1. In the ith annulus, either encounter the first object or the second object

or ... or the N th object is encountered. These are mutually exclusive events. There-

fore, to calculate the probability of one encounter in the ith annulus, the individual

probabilities are summed. That is,

P (E1,∆Ai
) = 2πρi∆ρi

1

2πσ2
e−

ρ2
i

2σ2 + · · · + 2πρi∆ρi
1

2πσ2
e−

ρ2
i

2σ2

︸ ︷︷ ︸

N

= N
ρi

σ2
e−

ρ2
i

2σ2 ∆ρi (A.44)
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The probability of exactly one classified encounter occurring during [0, r] requires

considering all the permutations where one classified encounter could occur. That is

P (C1,A) = P (C1,∆A1) + P (C1,∆A2) + · · · + P (C1,∆An
) (A.45)

So

P (C1,A) = N
ρ1

σ2
e−

ρ2
1

2σ2 ∆ρ1Pc1 +N
ρ2

σ2
e−

ρ2
2

2σ2 ∆ρ2Pc2 + · · · +N
ρn

σ2
e−

ρ2
n

2σ2 ∆ρnPcn

= N

n∑

i

ρi

σ2
e−

ρ2
i

2σ2 ∆ρiPci (A.46)

The probability of exactly two classified encounters occurring during [0, r] requires

considering all the permutations where two classified encounters could occur. That

is

P (C2,A) = P (C1,∆A1 ∩ C1,∆A2) + P (C1,∆A1 ∩ C1,∆A3) + · · · + P (C1,∆A1 ∩ C1,∆An
) +

P (C1,∆A2 ∩ C1,∆A3) + P (C1,∆A2 ∩ C1,∆A4) + · · · + P (C1,∆A2 ∩ C1,∆An
) +

...

+P
(
C1,∆An−1 ∩ C1,∆An

)
+

P (C2,∆A1) + P (C2,∆A2) + · · · + P (C2,∆An
) (A.47)

Bayes’ rule can be applied to the joint probabilities P (C1,∆Ai
∩ C1,∆Ak

). That is,

P (C1,∆Ai
∩ C1,∆Ak

) = P (C1,∆Ai
|C1,∆Ak

)P (C1,∆Ak
) (A.48)
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So,

P (C2,A) = (N − 1)
ρ2

σ2
e−

ρ2
2

2σ2 ∆ρ2Pc2N
ρ1

σ2
e−

ρ2
1

2σ2 ∆ρ1Pc1 +

(N − 1)
ρ3

σ2
e−

ρ2
3

2σ2 ∆ρ3Pc3N
ρ1

σ2
e−

ρ2
1

2σ2 ∆ρ1Pc1 + · · · +

(N − 1)
ρn

σ2
e−

ρ2
n

2σ2 ∆ρnPcnN
ρ1

σ2
e−

ρ2
1

2σ2 ∆ρ1Pc1 +

(N − 1)
ρ3

σ2
e−

ρ2
3

2σ2 ∆ρ3Pc3N
ρ2

σ2
e−

ρ2
2

2σ2 ∆ρ2Pc2 +

(N − 1)
ρ4

σ2
e−

ρ2
4

2σ2 ∆ρ4Pc4N
ρ2

σ2
e−

ρ2
2

2σ2 ∆ρ2Pc2 + · · · +

(N − 1)
ρn

σ2
e−

ρ2
n

2σ2 ∆ρnPcnN
ρ2

σ2
e−

ρ2
2

2σ2 ∆ρ2Pc2 +

...

(N − 1)
ρn

σ2
e−

ρ2
n

2σ2 ∆ρnPcnN
ρn−1

σ2
e−

ρ2
n−1
2σ2 ∆ρn−1Pcn−1 +

(
N

2

) n∑

i=1

(
ρi

σ2
e−

ρ2
i

2σ2 ∆ρiPci

)2

=

(
N

2

) n∑

i=1

n∑

k=1

ρi

σ2
e−

ρ2
i

2σ2 ∆ρiPci
ρk

σ2
e−

ρ2
k

2σ2 ∆ρkPck

=

(
N

2

)[ n∑

i=1

ρi

σ2
e−

ρ2
i

2σ2 ∆ρiPci

]2

(A.49)

The last step involved using Fubini’s Theorem. In general, the probability of exactly

j classified encounters occurring during [0, r] is

P (Cj,A) =

(
N

j

)[ n∑

i=1

ρi

σ2
e−

ρ2
i

2σ2 ∆ρiPci

]j

. (A.50)

Taking the limit as ∆ρi → 0, i = 1, . . . , n, n→ ∞ such that
∑n

i=1Ai = As yields

P
(
Cj,A(r)

)
=

(
N

j

)[∫ r

0

Pc (ρ)
ρ

σ2
e−

ρ2

2σ2 dρ

]j

. (A.51)
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Equation (A.51) can be used with Pc (ρ) = 1− PTR (ρ) to determine the probability

of no target attacks occurring up through radius r. The possible mutually exclusive

events are

no target encounters

1 misclassified target encounter and N − 1 targets not encountered

2 misclassified target encounters and N − 2 targets not encountered
...

N misclassified target encounters

Equation (A.37) can be used to calculate the joint probabilities. The probability of

no target attacks occurring up through radius r, assuming N targets, is then

P
(
T0,A(r)

)
=

[

1 −

∫ r

0

ρ

σ2
T

e
−

ρ2

2σ2
T dρ

]N

+

N∑

j=1

(
N

j

){∫ r

0

[1 − PTR (ρ)]
ρ

σ2
T

e
−

ρ2

2σ2
T dρ

}j [

1 −

∫ r

0

ρ

σ2
T

e
−

ρ2

2σ2
T dρ

]N−j

=
N∑

j=0

(
N

j

){∫ r

0

[1 − PTR (ρ)]
ρ

σ2
T

e
−

ρ2

2σ2
T dρ

}j [

1 −

∫ r

0

ρ

σ2
T

e
−

ρ2

2σ2
T dρ

]N−j

=

[

1 −

∫ r

0

PTR (ρ)
ρ

σ2
T

e
−

ρ2

2σ2
T dρ

]N

(A.52)

where σT is the standard deviation for targets. The last step involved using the

binomial theorem.

Similarly, the probability of no false target attacks occurring up through radius

r, assuming M false targets is

P
(
F0,A(r)

)
=

{

1 −

∫ r

0

[1 − PFTR (ρ)]
ρ

σ2
FT

e
−

ρ2

2σ2
FT dρ

}M

(A.53)

where σFT is the standard deviation for false targets.
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Equation (A.51) assumes the same classification probability is used for each

encounter. If j objects are encountered, suppose l are classified with Pc1 (ρ) and j− l

are classified with Pc2 (ρ). Thus,

P [l classified with Pc1 (ρ) ∩ j − l classified with Pc2 (ρ)|j encounters] =
(
j

l

)[∫ r

0

Pc1 (ρ)
ρ

σ2
e−

ρ2

2σ2 dρ

]l [∫ r

0

Pc2 (ρ)
ρ

σ2
e−

ρ2

2σ2 dρ

]j−l

(A.54)

A.4 Discussion

Now that expressions for the probability of exactly j classified encounters oc-

curring up through a specified time t or radius r exist, the 12 elemental probabilities

for each of the scenarios can be calculated. This is done in Appendix B.
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Appendix B. Derivation of Elemental Probabilities for Scenarios 1-7

The 12 elemental probabilities needed to calculate P (m = m̂), P (n = n̂), P (m ≥ m̂),

and P (n ≥ n̂) are derived for Scenarios 1-7.

B.1 Scenario 1

This scenario is the specific case of Scenario 3 when N = 1. Hence, the

derivation is given in Section B.3.

B.2 Scenario 2

For this scenario, there is a Poisson field of false targets with density α (t) and

a Poisson field of targets with density β (t). The air vehicle flies along a straight

path with area coverage rate Q (t). In a Poisson field, there is an infinite number of

objects available. Unlike uniform and normal distributions, events in a Poisson field

are independent. Therefore, there is no need to account for every object. The 12

elemental probabilities simplify to

P1 = P (Tn−1,A ∩ T1,dA)

P2 = P (Fm,A)

P3 = P (Tn,A)

P4 = P (Fm−1,A ∩ F1,dA)

P5 = P (F0,A)

P6 = P (T0,A)

P7 = P
(
Tn−1,A ∩ T1,dA ∩ T0,Af

)

P8 = P
(
Fm,A ∩ F0,Af

)

P9 = P
(
Tn,A ∩ T0,Af

)

P10 = P
(
Fm−1,A ∩ F1,dA ∩ F0,Af

)

P11 = P (F0,As
)

P12 = P (T0,As
)
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To calculate joint probabilities, the individual probabilities are multiplied. Using

Eqs. (A.17) and (A.18), along with the first assumption in Section A.1 multiplied by

the corresponding classification probability gives

P1 = e−y(t)
[y (t)](n−1)

(n− 1)!
PTR (t)Q (t) β (t) dt

P2 = e−x(t)
[x (t)]m

m!

P3 = e−y(t)
[y (t)]n

n!

P4 = e−x(t)
[x (t)](m−1)

(m− 1)!
[1 − PFTR (t)]Q (t)α (t) dt

P5 = e−x(t)

P6 = e−y(t)

P7 = e−y(T ) [y (t)](n−1)

(n− 1)!
PTR (t)Q (t) β (t) dt

P8 = e−x(T ) [x (t)]m

m!

P9 = e−y(T ) [y (t)]n

n!

P10 = e−x(T ) [x (t)](m−1)

(m− 1)!
[1 − PFTR (t)]Q (t)α (t) dt

P11 = e−x(T )

P12 = e−y(T )

(B.1)

where

x (t) ≡ νFT (t) =

∫ t

0

[1 − PFTR (τ)]α (τ)Q (τ) dτ. (B.2)

and

y (t) ≡ νT (t) =

∫ t

0

PTR (τ) β (τ)Q (τ) dτ (B.3)
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B.3 Scenario 3

For this scenario, N targets are uniformly distributed among a Poisson field of

false targets with density α (t). The air vehicle flies along a straight path with area

coverage rate Q (t).

Scenario 3: First Elemental Probability. At least one target is assumed to be

encountered in dA. Therefore, at most, N − 1 target encounters can occur in A. Let

j be the number of target encounters in A. For n − 1 target attacks, j ≥ n − 1.

Applying Bayes’ rule to the equation for P1 gives

P1 = P
(
Tn−1,A ∩ T j−(n−1),A ∩NN−1−j,Af

∩ T1,dA

)
=

P
(
Tn−1,A ∩ T j−(n−1),A|NN−1−j,Af

∩ T1,dA

)
P
(
NN−1−j,Af

∩ T1,dA

)
=

P
(
Tn−1,A ∩ T j−(n−1),A|NN−1−j,Af

∩ T1,dA

)
P
(
NN−1−j,Af

|T1,dA

)
P (T1,dA) (B.4)

For a given j,

P (T1,dA) = N
1

AB
PTR (t)Q (t) dt (B.5)

using Eq. (A.29),

P
(
NN−1−j,Af

|T1,dA

)
=

(
N − 1

N − 1 − j

)[
1

AB

∫ T

t

Q (τ) dτ

]N−1−j

=

(
N − 1

j

)

×

[
1

AB

∫ T

t

Q (τ) dτ +
1

AB

∫ t

0

Q (τ) dτ −
1

AB

∫ t

0

Q (τ) dτ

]N−1−j

=

(
N − 1

j

)[

1 −
1

AB

∫ t

0

Q (τ) dτ

]N−1−j

(B.6)
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using Eq. (A.36), and

P
(
Tn−1,A ∩ T j−(n−1),A|NN−1−j,Af

∩ T1,dA

)
=

(
j

n− 1

)[
1

AB

∫ t

0

PTR (τ)Q (τ) dτ

]n−1

×

[
1

AB

∫ t

0

Q (τ) dτ −
1

AB

∫ t

0

PTR (τ)Q (τ) dτ

]j−(n−1)

(B.7)

using Eq. (A.40). Define one new state, q (t), representing the probability of encoun-

tering a specific target.

q (t) ≡
1

AB

∫ t

0

Q (τ) dτ (B.8)

The state y (t) is defined as

y (t) ≡
1

AB

∫ t

0

PTR (τ)Q (τ) dτ (B.9)

Substituting these definitions and accounting for all possible values of j gives

P1 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)

[y (t)]n−1 [q (t) − y (t)]j−(n−1) [1 − q (t)]N−1−j

}

×

N
1

AB
PTR (t)Q (t) dt (B.10)

Scenario 3: Second Elemental Probability. Using Eq. (B.1),

P2 = e−x(t)
[x (t)]m

m!
. (B.11)

Scenario 3: Third Elemental Probability. Let j be the number of target en-

counters in A. For n target attacks, j ≥ n. Applying Bayes’ rule gives

P3 = P
(
Tn,A ∩ T j−n ∩NN−j,Af

)
= P

(
Tn,A ∩ T j−n|NN−j,Af

)
P
(
NN−j,Af

)
(B.12)
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For a given j,

P
(
Tn,A ∩ T j−n|NN−j,Af

)
=

(
j

n

)

[y (t)]n [q (t) − y (t)]j−n (B.13)

using Eq. (A.40), and

P
(
NN−j,Af

)
=

(
N

j

)

[1 − q (t)]N−j (B.14)

using Eq. (A.36) where q (t) is defined in Eq. (B.8) and y (t) is defined in Eq. (B.9).

Accounting for all possible values of j gives

P3 =
N∑

j=n

{(
N

j

)(
j

n

)

[y (t)]n [q (t) − y (t)]j−n [1 − q (t)]N−j

}

(B.15)

Scenario 3: Fourth Elemental Probability. Using Eq. (B.1),

P4 = e−x(t)
[x (t)](m−1)

(m− 1)!
[1 − PFTR (t)]Q (t)α (t) dt. (B.16)

Scenario 3: Fifth Elemental Probability. Using Eq. (B.1),

P5 = e−x(t). (B.17)

Scenario 3: Sixth Elemental Probability. To calculate P6, Eq. (B.15) is used

with n = 0 giving

P6 =
N∑

j=0

{(
N

j

)

[q (t) − y (t)]j [1 − q (t)]N−j

}

. (B.18)

Applying the binomial theorem gives

P6 = [1 − y (t)]N . (B.19)
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Scenario 3: Seventh Elemental Probability. Applying Bayes’ rule gives

P7 = P
(
Tn−1,A ∩ T j−(n−1),A ∩ T N−1−j,Af

∩ T1,dA

)
=

P
(
Tn−1,A ∩ T j−(n−1),A|T N−1−j,Af

∩ T1,dA

)
P
(
T N−1−j,Af

∩ T1,dA

)
=

P
(
Tn−1,A ∩ T j−(n−1),A|T N−1−j,Af

∩ T1,dA

)
P
(
T N−1−j,Af

|T1,dA

)
P (T1,dA) . (B.20)

For a given j,

P (T1,dA) = N
1

AB
PTR (t)Q (t) dt (B.21)

using Eq. (A.29),

P
(
T N−1−j,Af

|T1,dA

)
=

(
N − 1

N − 1 − j

){
1

AB

∫ T

t

[1 − PTR (τ)]Q (τ) dτ

}N−1−j

=

(
N − 1

j

)[
1

AB

∫ T

t

Q (τ) dτ −
1

AB

∫ T

t

PTR (τ)Q (τ) dτ

+
1

AB

∫ t

0

Q (τ) dτ −
1

AB

∫ t

0

PTR (τ)Q (τ) dτ

−
1

AB

∫ t

0

Q (τ) dτ +
1

AB

∫ t

0

PTR (τ)Q (τ) dτ

]N−1−j

=

(
N − 1

j

)

[1 − q (t) − y (T ) + y (t)]N−1−j (B.22)

using Eq. (A.36), and

P
(
Tn−1,A ∩ T j−(n−1),A|T N−1−j,Af

∩ T1,dA

)
=

(
j

n− 1

)

[y (t)]n−1 [q (t) − y (t)]j−(n−1)

(B.23)

using Eq. (A.40) where q (t) is defined in Eq. (B.8) and y (t) is defined in Eq. (B.9).

Accounting for all possible values of j yields

P7 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)

[y (t)]n−1 [q (t) − y (t)]j−(n−1)

[1 − q (t) − y (T ) + y (t)]N−1−j
}

N
1

AB
PTR (t)Q (t) dt (B.24)
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Scenario 3: Eighth Elemental Probability. Using Eq. (B.1),

P8 = e−x(T ) [x (t)]m

m!
(B.25)

Scenario 3: Ninth Elemental Probability. Applying Bayes’ rule gives

P9 = P
(
Tn,A ∩ T j−n ∩ T N−j,Af

)
= P

(
Tn,A ∩ T j−n|T N−j,Af

)
P
(
T N−j,Af

)
. (B.26)

For a given j,

P
(
T N−j,Af

)
=

(
N

N − j

){
1

AB

∫ T

t

[1 − PTR (τ)]Q (τ) dτ

}N−j

=

(
N

j

)[
1

AB

∫ T

t

Q (τ) dτ −
1

AB

∫ T

t

PTR (τ)Q (τ) dτ

+
1

AB

∫ t

0

Q (τ) dτ −
1

AB

∫ t

0

PTR (τ)Q (τ) dτ

−
1

AB

∫ t

0

Q (τ) dτ +
1

AB

∫ t

0

PTR (τ)Q (τ) dτ

]N−j

=

(
N

j

)

[1 − q (t) − y (T ) + y (t)]N−j (B.27)

using Eq. (A.36), and

P
(
Tn,A ∩ T j−n|T N−j,Af

)
=

(
j

n

)

[y (t)]n [q (t) − y (t)]j−n (B.28)

using Eq. (A.40) where q (t) is defined in Eq. (B.8) and y (t) is defined in Eq. (B.9).

Accounting for all possible values of j yields

P9 =
N∑

j=n

{(
N

j

)(
j

n

)

[y (t)]n [q (t) − y (t)]j−n [1 − q (t) − y (T ) + y (t)]N−j

}

(B.29)
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Scenario 3: Tenth Elemental Probability. Using Eq. (B.1),

P10 = e−x(T ) [x (t)](m−1)

(m− 1)!
[1 − PFTR (t)]Q (t)α (t) dt. (B.30)

Scenario 3: Eleventh Elemental Probability. Using Eq. (B.1),

P11 = e−x(T ). (B.31)

Scenario 3: Twelfth Elemental Probability. To calculate P12, Eq. (B.29) is used

with n = 0 giving

P12 =
N∑

j=0

{(
N

j

)

[q (t) − y (t)]j [1 − q (t) − y (T ) + y (t)]N−j

}

. (B.32)

Applying the binomial theorem gives

P12 = [1 − y (T )]N . (B.33)

B.4 Scenario 4

For this scenario, N targets and M false targets are uniformly distributed in

AB. The air vehicle flies along a straight path with area coverage rate Q (t). The

elemental probabilities for N uniformly-distributed targets (P1, P3, P6, P7, P9, and

P12) were derived in Section B.3. The elemental probabilities for M uniformly-

distributed false targets (P2, P4, P5, P8, P10, and P11) can be derived in the same

manner replacing j, n, N , PTR (t), and y (t) with i, m, M , [1 − PFTR (t)], and x (t)

respectively, where x (t) is defined as

x (t) ≡
1

AB

∫ t

0

[1 − PFTR (τ)]Q (τ) dτ. (B.34)
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The states q (t) and y (t) are the Scenario 3 states defined in Eqs. (B.8) and (B.9)

respectively. The 12 elemental probabilities become

P1 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)

[y (t)]n−1 [q (t) − y (t)]j−(n−1) [1 − q (t)]N−1−j

}

×

N

AB
PTR (t)Q (t) dt (B.35)

P2 =
M∑

i=m

{(
M

i

)(
i

m

)

[x (t)]m [q (t) − x (t)]i−m [1 − q (t)]M−i

}

(B.36)

P3 =
N∑

j=n

{(
N

j

)(
j

n

)

[y (t)]n [q (t) − y (t)]j−n [1 − q (t)]N−j

}

(B.37)

P4 =
M−1∑

i=m−1

{(
M − 1

i

)(
i

m− 1

)

[x (t)]m−1 [q (t) − x (t)]i−(m−1) [1 − q (t)]M−1−i

}

×

M

AB
[1 − PFTR (t)]Q (t) dt (B.38)

P5 = [1 − x (t)]M . (B.39)

P6 = [1 − y (t)]N . (B.40)

P7 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)

[y (t)]n−1 [q (t) − y (t)]j−(n−1)

[1 − q (t) − y (T ) + y (t)]N−1−j
}

N
1

AB
PTR (t)Q (t) dt (B.41)

P8 =
M∑

i=m

{(
M

i

)(
i

m

)

[x (t)]m [q (t) − x (t)]i−m [1 − q (t) − x (T ) + x (t)]M−i

}

(B.42)

P9 =
N∑

j=n

{(
N

j

)(
j

n

)

[y (t)]n [q (t) − y (t)]j−n [1 − q (t) − y (T ) + y (t)]N−j

}

(B.43)
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P10 =
M−1∑

i=m−1

{(
M − 1

i

)(
i

m− 1

)

[x (t)]m−1 [q (t) − x (t)]i−(m−1)

[1 − q (t) − x (T ) + x (t)]M−1−i
} M

AB
[1 − PFTR (t)]Q (t) dt (B.44)

P11 = [1 − x (T )]M . (B.45)

P12 = [1 − y (T )]N . (B.46)

B.5 Scenario 5

For this scenario, N targets are normally distributed among a Poisson field of

false targets with density α (ρ). Each target has a circular normal distribution with

standard deviation σy. The search area As is a circular disc of radius R. The air

vehicle searches the disc using concentric annuli of radius r and thickness dr. The

search begins at the origin of the disc and progresses outward. The 12 elemental

probabilities have the same form as those calculated in Section B.3 for Scenario 3,

but the states are defined as

qy (r) ≡

∫ r

0

ρ

σ2
y

e
−

ρ2

2σ2
y dρ (B.47)

x (r) ≡

∫ r

0

[1 − PFTR (ρ)] 2πρdρ (B.48)

y (r) ≡

∫ r

0

PTR (ρ)
ρ

σ2
y

e
−

ρ2

2σ2
y dρ. (B.49)

Also, the probabilities of one attack in dA are

P (T1,dA) = NPTR (r)
r

σ2
y

e
−

r2

2σ2
y dr (B.50)

and

P (F1,dA) = [1 − PFTR (r)] 2πrα (r) dr. (B.51)
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With these substitutions,

P1 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)

[y (r)]n−1 [qy (r) − y (r)]j−(n−1) [1 − qy (r)]N−1−j

}

×

NPTR (r)
r

σ2
y

e
−

r2

2σ2
y dr (B.52)

P2 = e−x(r)
[x (r)]m

m!
(B.53)

P3 =
N∑

j=n

{(
N

j

)(
j

n

)

[y (r)]n [qy (r) − y (r)]j−n [1 − qy (r)]N−j

}

(B.54)

P4 = e−x(r)
[x (r)](m−1)

(m− 1)!
[1 − PFTR (r)] 2πrα (r) dr (B.55)

P5 = e−x(r) (B.56)

P6 = [1 − y (r)]N (B.57)

P7 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)

[y (r)]n−1 [qy (r) − y (r)]j−(n−1)

[1 − qy (r) − y (R) + y (r)]N−1−j
}

NPTR (r)
r

σ2
y

e
−

r2

2σ2
y dr (B.58)

P8 = e−x(R) [x (r)]m

m!
(B.59)

P9 =
N∑

j=n

{(
N

j

)(
j

n

)

[y (r)]n [qy (r) − y (r)]j−n [1 − qy (r) − y (R) + y (r)]N−j

}

(B.60)

P10 = e−x(R) [x (r)](m−1)

(m− 1)!
[1 − PFTR (r)] 2πrα (r) dr (B.61)

P11 = e−x(R) (B.62)

P12 = [1 − y (R)]N . (B.63)
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B.6 Scenario 6

For this scenario, N targets and M false targets are normally distributed in

AB. Each false target has a circular normal distribution with standard deviation σx,

and each target has a circular normal distribution with standard deviation σy. The

search area As is a circular disc of radius R. The air vehicle searches the disc using

concentric annuli of radius r and thickness dr. The search begins at the origin of the

disc and progresses outward. The elemental probabilities for N normally-distributed

targets (P1, P3, P6, P7, P9, and P12) were derived in Section B.5. The elemental

probabilities for M normally-distributed false targets (P2, P4, P5, P8, P10, and P11)

can be derived in the same manner replacing j, n, N , PTR (r), qy (r), and y (r) with

i, m, M , [1 − PFTR (r)], qx (r), and x (r) respectively, where

qx (r) ≡

∫ r

0

ρ

σ2
x

e
−

ρ2

2σ2
x dρ (B.64)

and

x (r) ≡

∫ r

0

[1 − PFTR (ρ)]
ρ

σ2
x

e
−

ρ2

2σ2
x dρ. (B.65)

The states qy (r) and y (r) are the Scenario 5 states defined in Eqs. (B.47) and (B.49)

respectively. The 12 elemental probabilities become

P1 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)

[y (r)]n−1 [qy (r) − y (r)]j−(n−1) [1 − qy (r)]N−1−j

}

×

NPTR (r)
r

σ2
y

e
−

r2

2σ2
y dr (B.66)

P2 =
M∑

i=m

{(
M

i

)(
i

m

)

[x (r)]m [qx (r) − x (r)]i−m [1 − qx (r)]M−i

}

(B.67)

P3 =
N∑

j=n

{(
N

j

)(
j

n

)

[y (r)]n [qy (r) − y (r)]j−n [1 − qy (r)]N−j

}

(B.68)
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P4 =
M−1∑

i=m−1

{(
M − 1

i

)(
i

m− 1

)

[x (r)]m−1 [qx (r) − x (r)]i−(m−1) [1 − qx (r)]M−1−y

}

×

M [1 − PFTR (r)]
r

σ2
x

e
−

r2

2σ2
x dr (B.69)

P5 = [1 − x (r)]M (B.70)

P6 = [1 − y (r)]N (B.71)

P7 =
N−1∑

j=n−1

{(
N − 1

j

)(
j

n− 1

)

[y (r)]n−1 [qy (r) − y (r)]j−(n−1)

[1 − qy (r) − y (R) + y (r)]N−1−j
}

NPTR (r)
r

σ2
y

e
−

r2

2σ2
y dr (B.72)

P8 =
M∑

i=m

{(
M

i

)(
i

m

)

[x (r)]m [qx (r) − x (r)]i−m [1 − qx (r) − x (R) + x (r)]M−i

}

(B.73)

P9 =
N∑

j=n

{(
N

j

)(
j

n

)

[y (r)]n [qy (r) − y (r)]j−n [1 − qy (r) − y (R) + y (r)]N−j

}

(B.74)

P10 =
M−1∑

i=m−1

{(
M − 1

i

)(
i

m− 1

)

[x (r)]m−1 [qx (r) − x (r)]i−(m−1)

[1 − qx (r) − x (R) + x (r)]M−1−i
}

M [1 − PFTR (r)]
r

σ2
x

e
−

r2

2σ2
x dr (B.75)

P11 = [1 − x (R)]M (B.76)

P12 = [1 − y (R)]N . (B.77)

B.7 Scenario 7

This scenario is the specific case of Scenario 5 when N = 1. Hence, the

derivation is given in Section B.5.
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Appendix C. Nondimensionalization

Consider the two control variables. Probability of a target report, PTR, has no

dimensions and is between 0 and 1. Area coverage rate, Q, has dimensions of area

per time and is between Qmin and Qmax. For numerical conditioning, it can be

beneficial to have all control variables with no dimensions and roughly the same

order of magnitude.

One possible way to nondimensionalize area coverage rate is to divide it by the

scaled nominal area coverage rate, Qn. Thus, a new control variable, Q̃, is introduced

such that

Q̃ ≡
Q

Qn

. (C.1)

Since Q < Qn, Q̃ will be between 0 and 1. The new control variable must be inserted

into the ROC model. Recall the ROC parameter c was defined as

c ≡
Qn

Q
. (C.2)

Thus,

c ≡
1

Q̃
, (C.3)

and

[1 − PFTR (t)] =
Q̃ (t)PTR (t)

Q̃ (t)PTR (t) + [1 − PTR (t)]
. (C.4)

The problem parameters can also be nondimensionalized. If the false target

density, α, is assumed constant, one can define the nondimensional parameter,

νn ≡ αQnT (C.5)
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which represents a nominal number of false target encounters. Finally, one can define

the nondimensional parameter

κ ≡
QnT

AB
. (C.6)

which represents a nominal area ratio.

Consider Scenario 1. Table C.1 lists how the the 12 elemental probabilities and

corresponding state definitions would be impacted. The other six scenarios could be

modified in a similar fashion. The final result is an optimal control problem with

nondimensional problem parameters νn and κ, nondimensional control variables PTR

and Q̃, and final time T .

Table C.1 Scenario 1 Elemental Probabilities and State Definitions with Q̃

P1 = κ
T
PTR (t) Q̃ (t) dt

P2 = e−x(t)
[x(t)]m

m!

P3 = [1 − y (t)]

P4 = e−x(t)
[x(t)](m−1)

(m−1)!
νn

T

[Q̃(t)]
2
PTR(t)

Q̃(t)PTR(t)+[1−PTR(t)]
dt

P5 = e−x(t)

P6 = [1 − y (t)]

P7 = κ
T
PTR (t) Q̃ (t) dt

P8 = e−x(T ) [x(t)]m

m!

P9 = [1 − y (T )]

P10 = e−x(T ) [x(t)](m−1)

(m−1)!
νn

T

[Q̃(t)]
2
PTR(t)

Q̃(t)PTR(t)+[1−PTR(t)]
dt

P11 = e−x(T )

P12 = [1 − y (T )]

x (t) ≡
∫ t

0
νn

T

[Q̃(τ)]
2
PTR(τ)

Q̃(τ)PTR(τ)+[1−PTR(τ)]
dτ

y (t) ≡
∫ t

0
κ
T
PTR (τ) Q̃ (τ) dτ
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Appendix D. Further Analysis of Scenario 1

It was shown in Chapter III that the optimal unconstrained solution was increasing

with time until it saturated at PTRmax
= 1 sometime prior to the final time T . This

strategy of starting conservative then gradually increasing aggressiveness until the

end, where an all out effort is tried, is common in game theory. Without a constraint

on false target attacks, the system has nothing to lose by declaring all objects as

targets near the end. The time where the optimal solution starts to saturate, tc, is

now addressed.

The optimal unconstrained solution, at any time, was shown to be

P ∗

TR (t) =
c−

√

λx (t)αcABex(t)

c− 1
. (D.1)

At tc,

P ∗

TR (tc) = 1 =
c−

√

λx (tc)αcABex(tc)

c− 1
. (D.2)

Thus,

λx (tc)αcABe
x(tc) = 1. (D.3)

For tc ≤ t ≤ T ,

P ∗

TR (t) = 1. (D.4)

The state and costate equations when tc ≤ t ≤ T are

ẋ (t) = αQ, x (T ) = x (T ) , tc ≤ t ≤ T (D.5)

λ̇x (t) = −
Q

AB
e−x(t), λx (T ) = 0, tc ≤ t ≤ T (D.6)

Integrating the state equation gives

x (t) = x (T ) + αQt− αQT, tc ≤ t ≤ T (D.7)
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Substituting Eq. (D.7) into the costate equation gives

λ̇x (t) = −
Q

AB
e−[x(T )+αQt−αQT ] = −

Q

AB
e−[x(T )−αQT ]e−αQt, tc ≤ t ≤ T (D.8)

Integrating Eq. (D.8) gives

λx (t) = −
1

αAB
e−x(T ) +

1

αAB
e−[x(T )+αQt−αQT ], tc ≤ t ≤ T (D.9)

Substituting Eq. (D.7) and Eq. (D.9) into Eq. (D.3) gives

{

−
1

αAB
e−x(T ) +

1

αAB
e−[x(T )+αQtc−αQT ]

}

αcABe
[x(T )+αQtc−αQT ] = 1 (D.10)

Solving for tc gives

tc = T +
1

αQ
ln

(

1 −
1

c

)

. (D.11)
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